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Abstract

Estimating Markov models with hidden state variables presents significant challenges
because the likelihood involves a high-dimensional integral over the unobserved states.
This complication renders the standard approach to prove the asymptotic properties of
the likelihood-based estimator infeasible, because it relies on a log-transformation of the
likelihood function. Moreover, the need to numerically approximate the integral in the like-
lihood function introduces an additional source of error in the estimation process. In this
paper, we demonstrate how occasional observations of the hidden state restore the feasibil-
ity of the log-likelihood approach for establishing asymptotic properties, thereby extending
existing results to general state spaces for the hidden state. Further, we show that, given
consistency and asymptotic normality of the exact estimator, the desired properties can be

extended to the estimator based on the approximated likelihood.
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1 Introduction

The estimation of structural dynamic economic models often encounters limited data availability,
having certain state variables observed only intermittently across time periods. We refer to such
state variables as occasionally observed.! In maximum likelihood estimation, when a realization
of a state is not observed by the econometrician, but has (potentially) been relevant for the
decision maker, it must be marginalized by integrating it out of the density of the data that
induces the likelihood of the parameters to be estimated. However, if the occasionally observed
states are serially correlated—as it is typically the case in realistic dynamic models—this integral
tends to be high-dimensional, and cannot be decomposed analytically into smaller integrals.
This results in two issues: First, the integral structure of the likelihood makes the application
of a law of large numbers on the log-likelihood impossible; thus, even if the integral can be
computed in closed form, the large sample properties of this exact estimator are not ex ante
innate. Second, since the former assertion typically fails to hold in concrete applications, the
integral has to be approximated numerically; consequently, the approzimate estimator is subject
to an additional source of error, making its asymptotic properties even more ambiguous.

For some special classes of models, the literature has developed the asymptotic theory for
estimators based on integrated likelihoods that justify their application, most notably the hidden
Markov models (HMMs) literature. However, while the latter has indeed established consistency
and asymptotic normality for HMMs, it remains restrictive in three key aspects: First, it assumes
complete unobservability of at least one state variable, and thus fails to fully exploit the available
data in the presence of occasional observations. Second, it imposes limitations on the form of the
transition density; specifically, HMMs rely on a conditional independence assumption, wherein
the observed states at a given period t are independent of observations from other periods—
particularly from ¢ — 1—given the unobserved state at period ¢. Third, the results typically rely
on the restrictive assumption that the domain of the unobserved states is effectively compact,
which is prohibitive for many economic models where random unobserved components are often
drawn from an auto-regressive distribution with normal innovations whose support is the real
line.

Gilch et al. (2024) address the three limitations by demonstrating how to incorporate occa-
sional observations into the likelihood function, while accounting for potential endogeneity aris-
ing from the inter-dependency between observability and the realization of the state variables.
To evaluate the resulting function numerically, they invoke a recursive likelihood integration
method (RLI; originally due to Reich, 2018), thereby enabling likelihood-based inference in the
presence of occasionally observed states. In this companion paper to Gilch et al. (2024), we
provide the large sample properties of the proposed estimator, which justify its use theoretically.
In particular, we exploit the presence of occasional observations to establish consistency and
asymptotic normality of the exact estimator for general state domains, including the (full) real
line, and for general transition densities under mild regularity requirements.? Moreover, since

Gilch et al. (2024) apply numerical methods that are naturally subject to approximation error,

'Hall and Rust (2021) refer to such variables as endogenously sampled.
*Hall and Rust (2021) establish asymptotic results for a simulated method of moments estimator, applicable
to a similarly general class of models compared to ours.



we apply and extend the proof strategies of Griebel et al. (2019) to demonstrate that also the

approximate estimator remains both consistent and asymptotically normal.

Consistency and asymptotic normality of the maximum likelihood estimator (MLE) in hidden
Markov models (HMMs) have been the subject of significant research. The foundational work
of Baum and Petrie (1966) establishes these properties for HMMs with finite state spaces and
introduces the influential ”infinite-past” proof strategy, which serves as a cornerstone for much
of the subsequent literature. Building on this, Leroux (1992) and Bickel et al. (1998) extend
the consistency results to HMMs where the hidden state space remains finite, but the obser-
vation space is allowed to be general. Further advancements include the work of Douc et al.
(2004), who study autoregressive HMMs, introducing an additional dependency channel from
past observations. They demonstrate both consistency and asymptotic normality under the
assumption that the hidden state space is compact and the observation space is general. Cappé
et al. (2005) generalize these results by addressing HMMSs with completely general state spaces
for both the hidden and observed variables, though their results hinge on specific conditions on
the transition probabilities, which may not always hold in practice. Douc et al. (2011) refine the
understanding of consistency by removing the assumption of uniform positivity, i.e., de facto
compactness of the state space, which was prevalent in earlier analyses.

We contribute to this literature by leveraging occasional observations of the hidden vari-
able to eliminate the compactness assumption on the state space for establishing both the
consistency and asymptotic normality of our estimator. Notably, we do not impose the spe-
cific structure of hidden Markov models, thereby extending existing results to address the large
sample properties of general Markov models with occasionally observed states. Note that max-
imum likelihood estimation inherently assumes point identification of the analyzed model-—and
so do we. Restricting oneself to a certain class of models may allow the econometrician to
apply non-likelihood based estimation approaches that circumvent this assumption. E.g., for
dynamic discrete choice models, Kasahara and Shimotsu (2009) present conditions that imply
non-parametric identifiability, while Berry and Compiani (2020) use an instrumental variables
approach to show identification in dynamic models from the IO literature. For HMM, Cappé
et al. (2005) discuss classes of transition densities for which identifiability can be derived and
Douc et al. (2011) provide an information-theoretic argument, which yields identifiability under
certain conditions.

Despite the extensive literature on the asymptotic properties of the exact likelihood estima-
tor, relatively little attention has been given to how these properties carry over to estimators
based on approximate likelihoods. Broadly, approximation methods for these integrals fall into
two categories. The first consists of simulation-based approaches, such as particle filter meth-
ods, which simulate possible sequences of the unobserved states to construct a Monte Carlo
approximation of the likelihood. For these methods, the established literature on simulated
maximum likelihood provides starting points for a deeper theoretical analysis. The second cat-
egory involves numerical integration methods, which are deterministic and highly efficient but
inherently subject to the curse of dimensionality. Unlike simulation-based methods, these de-

terministic approximations exhibit a non-vanishing error when the number of integration nodes



is fixed. The approximation error decreases only as the accuracy of the approximation improves
asymptotically. Importantly, this error does not only increase the variance of the estimator but
introduces a bias that cannot be controlled when using a small number of approximation nodes.
This situation calls for a dedicated analysis of estimators based on approximated likelihoods,
as pioneered by Griebel et al. (2019).

We base our proofs on the presentation in Newey and McFadden (1994) for extremum es-
timators, and recent results by Griebel et al. (2019) for the estimators including the numerical
approximation of an integral in their definition. A key feature of these findings are assumptions
about regularity of the likelihood function and conditions regarding the search domain for the
estimated parameters. We show how to use these conditions to obtain consistency and asymp-
totic normality for the approximate estimator of Markov models with occasionally observed
state variables.

The remainder of this paper is organized as follows: In Section 2, we first present Markov
models with occasionally observed state variables in a general framework and then introduce the
recursive likelihood integration approach. In Section 3, we proof consistency and asymptotic
normality of the exact estimator based on the frequency of the occasional observations. In
Section 4, we provide conditions under which both properties also hold for the approximate

estimator.

2 Markov models with occasionally observed states

In this section we present the general likelihood for Markov models with occasionally observed
states and demonstrate the potential challenges for deriving large sample properties of the
maximum likelihood estimator. For this, we first use a simplified setting with only two state
variables—one that is always observed and one that is only observed occasionally. We show that
the likelihood forms a high-dimensional integral over a non-standard domain. This simplified
example allows us to demonstrate how the integral structure of the likelihood interferes with the
standard loglikelihood approach for showing asymptotic properties of the maximum likelihood
estimator. Afterwards, we generalize our notation to include an arbitrary number of state
variables with general observation patterns. Note that in this section we closely follow the
notation of the companion paper Gilch et al. (2024) to demonstrate the applicability of our
results to the RLI estimator proposed in Gilch et al. (2024). Hence the presentation and

derivation of the likelihood in this paper does not form a contribution in itself.

2.1 The likelihood in a simplified model with one-dimensional states

Consider a discrete-time Markov process {y:, x; }—possibly controlled, like in dynamic discrete
choice models—with two one-dimensional state variables, y;, x; € R, and a parametric family
of transition probability functions, P(y¢, x¢|yi—1,2¢—1;0). We want to estimate the model pa-
rameter # using a maximum likelihood approach. In particular, we are interested in a case of
limited data availability, where the variable y; is observed for all periods t € T ={1,...,T} of
the sample, whereas z; is observed only at the times t € 7 with 7 C 7.

To introduce basic notation and the fundamental treatment of unobserved states, let us



first consider two counterfactual cases: Under full observability for both states x; and y,—i.e.,

T = T—the (unconditional) likelihood function of the parameter vector # reads

LT(H) = P({y, i }ie130)
T

= P(@/1>$1’9)Hp(ytaxt‘yt—lafrt—ﬁe)? (1)
=2

where P(y1,21]0) is the stationary distribution of z; (if available). Conversely, if no state
observations on z; are available—i.e., 7 = (—the likelihood function forms an integral with

respect to the unobserved state,
LT(0) = P({ys }seT: )

T
Z/“'/ST P(y1, 2110) [ [ P (v, Eelye—1, 80-1;0) (21, ... 7). (2)
z 2

t=

Here and in the following, we decorate any integration variable with a tilde; in (2), we write
T; to clearly distinguish them from any data set element or state variable, z;. Note that the
overall dimensionality of the integral in (2) is proportional to the time horizon of the data, 7'
Thus, computing this integral constitutes a delicate task.

Suppose we have a single observation z; at ¢ that lies in the “interior” of T—i.e., 1 <t < T
and 7 = {t}. If we were to integrate the likelihood as in (2), the domain of integration in
the likelihood function would read {(1,...,%7) € SF : # = a7}, which is no longer a full-
dimensional subset of SI (for general state spaces S,), and thus potentially creates ill-defined
integrals. Therefore, we rewrite the integral to explicitly exclude the integration variable Z7y and

only integrate w.r.t. the unobserved states Z; for t € T\ T:

1
LT (0) = /-~-/P<y1,5c1|0) <H P(?Jt@t\%—lﬁ?t—lﬂ)) P(ys, xelye1, T5-1;0)
t=2
. (3)

‘P(yf+17‘%f+1|yt_7$t_; 9) H P(yt,it‘yt—h:it_l;e) d(jl)'"7jf—l7jf+1)"'7jT)'
t=t+2

In the companion paper, Gilch et al. (2024), we use the likelihood (3) to illustrate three key
challenges that arise when estimating dynamic models with occasional state observations. First,
observation of x; may depend on the realization of the variable itself, meaning that whether
or not we observe z; could convey information about its value. Ignoring this dependency in
constructing the likelihood can lead to biased estimators. Second, the integral in equation
(3) is numerically challenging, as its dimension grows proportionally with the time horizon T,
subjecting numerical quadrature methods to a curse of dimensionality. Third, due to the integral
structure, the asymptotic properties of the likelihood estimator are not ex ante clear because
the standard log-likelihood approach to proving these properties is infeasible. Additionally, the
estimator based on the approximated likelihood integral also includes an approximation error,
making its asymptotic properties even more difficult to characterize.

We discuss the first and second challenges in Gilch et al. (2024), so we will not explain them



in detail here. To summarize, the first challenge is addressed by incorporating information
about the observation process—specifically, the mechanism determining whether x; is observed
or not—into the likelihood formulation. Regarding the second challenge, Gilch et al. (2024)
introduces a generalized version of the recursive likelihood integration (RLI) method developed
by Reich (2018). This approach effectively avoids the curse of dimensionality and provides
a highly efficient deterministic approximation of the likelihood as is demonstrates in several
applications from the finance and IO literature.

Although we do not discuss the challenges in detail, we introduce the mechanism and no-
tation of the RLI method in this paper for two reasons. First, to our knowledge, it is the only
practical implementation of a deterministic algorithm for computing the likelihood integral.
Therefore, in order to demonstrate the relevance of our theoretical results we discuss how its
fast convergence properties can actually improve estimation compared to simulation approaches.
Second, for asymptotic normality, our proof requires approximations of the Jacobian and the
Hessian with sufficient convergence rates. In Section 4.2, we show how the RLI method can
provide these approximations.

The third challenge—the large-sample properties of the maximum likelihood estimator—can
be addressed in two parts: first, demonstrating how occasional observations establish the asymp-
totic properties of the estimator based on the exact integral; and second, showing that the RLI
approximation (or any similar approximator with comparable convergence properties) does not
distort these properties in the limit. In the following sections, we illustrate both approaches
using an example with a single observation.

To proceed, we first introduce the two estimators central to our analysis. The exact estima-
tor, éT, is based on the exact likelihood L7, which is generally not attainable because L’ does

not admit a closed form,

07 = argmax L7 (6). (4)

0O
This estimator is indexed by 7', the length of the time series, which we let approach infin-
ity to establish its asymptotic properties. The approximate estimator, éTN, is based on the

approximated likelihood LT%, defined formally in the next section,

Orn = argmax LN (0). (5)

0cO
It is indexed by both T' (the time dimension) and N, representing the numbers of nodes used
in each computation step of the approximation and, thus, representing the accuracy of the

approximation. We formally define NV in Section 4.1.

Failure of the standard loglikelihood approach. In the standard setup with fully ob-
served x;, asymptotic properties of the likelihood estimator 61 are obtained by taking the
logarithm of the likelihood (1),

T

log LT (6) = log P(y1,21|6) + Zlog Py, v¢|yi—1, x1—1;0).
=2



Taking the sample size T to infinity, consistency is derived using a law of large numbers and
asymptotic normality follows from a central limit theorem.

In the case of occasional state observations, this approach is not applicable: Taking the
logarithm of the likelihood (3) does not yield a sum over ¢ summands, but rather a sum of only

two summands, as the logarithm and the integral cannot be interchanged:

t—1
10gLT(9) = 10%/"‘/P(y1711~31|9) (Hp(ytaflt\yt—hi‘t—l;m) P(ys, xelye1, T5-1;0) (1, ..., T5 1)
t=2

T

+log/-~-/P(yg+1,955+1|yg,xg;«9) 1T P2y, 8150) | d(@epa, ... 37).
t=t+2

Of course, with a fixed number of observations (here: one), we do not obtain the infinite sum
required to derive the desired properties of the estimator when taking 7' to infinity. Instead,
it is only the dimension of the integral that becomes larger, and convergence is in our gen-
eral framework—to the best of our knowledge—unclear. This makes asymptotic statements
impossible, even if we were able to compute these integrals exactly.

However, in Section 3 we show, that it is possible to recover the asymptotical results known
from many other log-likelihood-based estimators, if the number of occasional observations,
S = |T], also tends to infinity as 7" grows. Then, these asymptotics can be derived based on
the joint probability of all states between two observation periods, P ({?/m xt}i:i +1|y@7 xg,; 9).
Importantly, this approach rests on the assumption that the period of non-observation between
two full observations of z; is bounded.? In Section 3.1, we formalize this setup as Assumption

A1 and discuss its implications in often encountered applications.

Error due to approximation As mentioned above, our likelihood cannot be evaluated an-
alytically and is therefore approximated numerically by some function LTV . Consequently, the
estimator we are actually interested in is not the maximizer of (6), éT, but rather the max-
imizer of this approximated likelihood, Orn. However, since LT # LTN implies éT =+ éTN,
approximating the likelihood introduces an additional deterministic error—one that does not
vanish as the sample size grows—into our estimator. This approximation error compounds the
estimator’s stochastic estimation error, affecting its asymptotic properties.

The consistency and asymptotic normality of 61N can be derived if both properties hold for
07 and if the error ||07 — Opy|| vanishes in the limit. With the first condition being adressed in
Section 3, we cover the second condition in Section 4: The idea behind our proof of the second
condition is to improve the accuracy of the approximation in proportion to the length of the
time series, meaning that IV, the number of approximation nodes, should increase alongside 7',
the sample length. By doing so, as T'— oo, the approximate estimator converges to the exact
estimator at the same rate at which the exact estimator converges to the true parameter. The
pace at which N needs to increase to achieve this convergence rate depends on the convergence

properties of the approximation method yielding LTV; for example, a fast-converging method

3Here, full implies that in the case of a occasionally observed state vector z; all components of this vector are
observed at the same time.



like the RLI algorithm requires only a relatively gradual increase in N, proportional to T

2.2 The likelihood and its approximation in the general model

We introduce a general notation to formulate the likelihood function of a Markov model with
serially correlated states, where some (or all) of the model states are observed only occasionally.
In fact, the notation presented below allows for arbitrary observations patterns both w.r.t. time
and the state space dimension. Again, we follow closely the notation and presentation in the
appendix of the companion paper Gilch et al. (2024), which establishes the RLI algorithm for
occasionally observed states.

In contrast to the previous section, we consider observed variables Y; and occasionally ob-
served variables X; jointly to allow for general observation patterns and simplify notation in
this section. Hence, we consider a stochastic process {W;}icn, where the random vector has
support S C R%, which we refer to as the “state space”.* Note that we restrict our attention to
continuous state variables here, as all concepts we present below have simple analogues in the
discrete case.

We assume the Markov model explaining {W;} to define a parametric family of (conditional)

distributions, which can be represented through probability density functions
P (Wt | {Ws}s<t§9) = P(Wt \ Wt—1§9)

with # € ® C RP.> In order to precisely express the observation pattern of a dataset, we
introduce some more notation: Let w;, = (wi)iETo denote the sub-vector of states for some
index set 790 C 7 = {1,...,d}. Moreover, we write 7p = 7 \ 79 for the complement of 75 w.r.t.
7, and we express the number of dimensions of w,, using the cardinality operator |r|. Finally,
note that if we write (w,, wz,), we tacitly assume the elements to be re-ordered appropriately
so that (wq,,ws,) = w, including the special cases (w-,wy) and (wy, w;).

This notation allows us to define the observation pattern of a dataset as follows: For an
observation horizon {0, ...,T}, the set of index sets {r}]_,, & C 7, specifies which dimensions
of the state vector w are observed at each point in time ¢, and we denote the dataset by
{wi . }E . Note that in order to distinguish entries of the dataset from generic sub-vectors of
states such as w;,, we have equipped the former with another time subscript besides the index
set. This notation also allows us to implicitly distinguish completely, never, and occasionally
observed variables and thus ties it back into the context of the previous section: A completely
observed variable wy; has ¢ € 74 for all ¢ € T, an unobserved variable has i € 7 for all ¢t and a

variable is occasionally observed if neither holds. At each point in time ¢, the state realizations

4We abstract from the more general case which supposes time-heterogenous dimensionality of the state space
in favor of a lighter notation. As the integration dimension will vary over time due to occasional observations of
Wi = w; this extension is straight-forward.

5The density Py can, of course, be time-dependent, but we spare the additional index here, as our notation
encompasses this feature—theoretically—through a deterministic, discrete state.

5Note that in the outline of this section, we use a single index set 7 to denote the points in time where
an observation of a single state takes place. Here, each point in time has its own index set 7¢, specifying the
dimensions of the state space which are observed at time t.



are an element of the subset
Si={weS:w, =w},

which “binds” the observed dimensions to the values from the dataset. Note, though, that not
necessarily all elements in S; have non-zero probability density. For the integration over the
unobserved dimensions, we also need the projection of S; to the lower-dimensional space where

the unobserved dimensions live:
St = {12) € RH—” W= Wz, W € St} .

We write S; = 0 if ; = 7 and thus 7 = ). The (unconditional) likelihood of the model under

observation regime {7;}._, reads

Ly (0) = L(O{we,r, Yi=y)
T

- / o / S H P (wtv Wt 7y ’wt—h Wt—1,714_15 9) d'U~)T o dwl (7)
X?:PSt t=1
T

:// ~ Hgt(wt;wt—lae)dﬁ)T'“dﬁfl (8)
><’7¥“=1‘St t=1

and thus resembles the definition of Lg in Reich (2018). The functions g; : S xS_1 xO—=R
are defined by

P(wtawt,Tt|wt—17wt—1,Tt_1;0) ift>1

P (@1,w1771|0) ift=1

gt(ﬁ)t,wt—lae) =

s.t. the dependence of the integrand on the data is implicitly given in the subscript ¢ of g;. Note
that both S; and @, can be empty if . = 7, i.e., g4, gr+1 are constant in w; and no integration
w.r.t. W, takes place. Using the Markov structure of the model and standard regularity condi-
tions for g;,” a Fubini-Tonelli theorem (the concrete version of it depending on the nature of

S) justifies a recursive formulation of (8),

¢

1 t>T
. 0 _
o) € R, : gt (wt’wtjlae) Piy1 =T T =T
Js, 9t (0, wi,7,)[we-1;0) .
0 (ond otherwise
. W W
ft+1( ) (9)
1 t>T
. ) 0 _
S 1 =Ry, w— gt (wt‘(wj wi-11):6) Pl =T otherwise,
fgt gt ((wawtﬁt)‘(wth—l,ﬁfﬂ;e) .
0 (il otherwise
L i (@)d"

"These follow from the fact that g; is derived from a conditional p.d.f. which tend to be continuous and
bounded in most economic applications.



and the final likelihood reads

g¢ (w5 0) ¢4 n=r
L6 i Yo) = : T (10)
f31 gt (0, w1.,);0) f§(w)d™ e otherwise.

While formulation (9) is exact, it is not practical for implementation purposes for the fol-

lowing reasons:

1. Actually evaluating the final likelihood—and thus evaluating either f§ or ¢§—would still
require traversing a tree with 7' — 1 levels and potentially infinitely many “knots” at each

level; thus its computational complexity would explode.

2. No explicit use is made from the knowledge of the observations w; ., to determine the

conditional distribution of wx,.

To address issue 1, we introduce a mapping between two function spaces B,, and P,,, whose
elements are real functions of n-dimensional arguments, and with all elements in P,, having a

complete representation through a countable set of parameters:
In:Bn%PnafoAv

where
f,f:R* DD >R,

and with the norm ||f — f || being “small” in the appropriate sense.

As indicated in issue 2, knowledge of w; -, can be used in many instances to obtain “high den-
sity regions” for wz, by conditioning its distribution on wy . This can often be exploited when
numerically approximating the integrals in (9), e.g., by placing the nodes of quadrature rules
accordingly. Therefore, we rewrite the relevant cases, conditioning the integrated probability

densities on the observed states; note that in practice, this is not always possible.

10



Consequently, the final likelihood function recursion reads

,

1 t>T
gt (welwi—1;0) Y, 4 Tt=T
PERY g gr (w150 f2, (i0)d™i =10 T1=T
e (Wrr [wr-1;6) . _ otherwise
: fgt gt (@’wt,rt,’wt—l; 9) ft0+1(w)d|”|w
1 t>T
gt (wt|(w, wtfl,Tt_1); 9) @fﬂ Tt =T
Tiry 1 (s 90 (1w, w017,):6) »
.8 1 R, we : ff+1(w)d"w) "o otherwise,
I\ﬂ,ﬂ <9t (wt,n | (w, wtfl,Tt_l); 9)
Js o (@|wg 7, (W, wi—1,7,_,);0) otherwise
(@)

(11)

and the actual likelihood can be computed analogously to (10).

3 Large sample properties of the exact maximum likelihood es-

timator with occasional observations

In this section, we establish the consistency and asymptotic normality of the exact estimator
1 based on the true likelihood LT. With occasional observations, we can decompose the
likelihood integral over all unobserved states into a product of integrals, each covering only a
single segment of unobserved states. Our primary assumption is that the mean (or maximum)
duration between two periods in which all state variables are observed remains bounded—a
condition that is trivial for a single occasionally observed state in most applications. Under this
assumption, the proofs of consistency and asymptotic normality follow from basic stationarity

and ergodicity arguments.

3.1 Assumptions on the observation pattern

The standard approach to proving the consistency of maximum likelihood estimators relies
on three key assumptions:® the uniform convergence of the likelihood function to a limiting
function, the continuity of this limiting function, and its unique maximization over a (compact)
parameter space, which ensures the identification of the estimation problem. For asymptotic
normality, similar conditions are required for the derivatives of both the likelihood and the
limiting function. For a detailed discussion see Newey and McFadden (1994). In Appendix A.1,
we restate their Theorems 2.1 and 3.1, which provide conditions for consistency and asymptotic

normality of the maximum likelihood estimator, as Lemmas 1 and 2 in order to reference them

8This approach also applies to the broader class of extremum estimators.

11



in our proofs where necessary.

The main challenge of this approach is to identify the limit function to which the likelihood
(3) converges as T'— 0co. The remaining two conditions—summarized in assumptions (i)-(iii) of
the Lemmas 1 and 2—depend on the researcher’s modeling choices, and we take them as given in
this paper. However, the difficulty with establishing the limit function arises specifically from
the structure of the likelihood and hence a general treatment of this condition is necessary.
Standard econometric theory treating maximum likelihood estimation uses the loglikelihood

to apply the law of large numbers that in turn provides uniform convergence of Lg. Given a

dataset wq,...,wp, a generic loglikelihood would take the form
T
log L(Olwy, ..., wp) =Y log L(6]wy) (12)
t=1

s.t. taking 7" to infinity provides a limit function of the form ¢(0) = E[log L(6|w;)] independent of
t. This approach is generally not applicable in our case with unobserved components w; = wy 7,
of the stochastic process wy: Integrating these out leads to the functional form (7) and hence an
integral “around” the product of individual likelihood contributions of w; -,. Due to the nature
of serial correlation of {X;}, the product cannot be pulled out of the integral and hence taking
the logarithm of Lg does not yield the sum form (12).

We utilize the occasional complete observations of the underlying state variable Wi = wy to
make this approach feasible again. Occasional complete observations interrupt the progression
of the unobserved series and “reset” it to start from an observed value. This allows us to
separate the integral over the entire (asymptotically infinite) time series into smaller integrals
over finite periods which are separated at complete observation times . We formalize the notion

of occasional complete observations in the following assumption:

Assumption Al. (Occasional complete observations)
Assume that there is a number T > 0 s.t. for all t > 1 there exists an integer s € {0, ..., T} with

Tirs = T (or analogously Tr1s = 0).

Practically speaking, this means that the stochastic variable w; is completely observed at
least every T periods. It disallows intervals on non-observations of arbitrary length and disallows
that components of w; are never observed. We illustrate the consequences of the existence of
such periods for the example 7y = 77 = 7p = 7: This implies the state Wi = wy is completely
observed and the integral over wy is formally undefined as 5{ = (). Abusing notation we let
Jy h(v)dw = h(v) so that (7) is a valid expression even when including the case of a completely
observed wj. Thus, the complete observation cancels integration w.r.t. dw; and allows us to

split up the integral at wy into two integrals:

L (9 } {wt,ﬁ}zzl)

Z/ | 9¢ (@, Wi—1,0) diz_y - - - duvy - / i Gt (W, We—1,0) dp—1 - - - digyq
Xtilst — X?_lst T

=25t (=9 1 St 41

= L0 | w1, wsm s wr) L (8] w5 w51 7y, 0r) (13)
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We exploit this decomposition at complete observation points in the proof of Theorem 1. We

further require two standard assumptions for inference with time series data.

Assumption A2. The stochastic process {W;}ien is said to be stationary ergodic if the follow-

ing conditions hold:

e Stationarity: For any s, k,t1,....tx € Ny it holds that

Pgo(thv EX) Wtk) = P@g(th—I—sa ) Wtk+s) .

e Ergodicity: For any two bounded functions f : RFT1 SR, g : R SR, and k,l,i € N
the process {W;}ien satisfies
Jim TR (Wi, Wigk)g(Wiiens -+ Wign )] =

ELf(Wi, .. s Wik | E[g(Witn, -, Wigni)] | = 0.
Theorem 1. Let {w; -, }1_; be (partial) observations of a Markov process {Wi}l_, as defined in
Section A.1 and suppose Assumptions A1 and A2 hold. Then, there exists a function £(0;Ts+)
s.t. the loglikelihood (T () = log Lg(ﬂ) with LZ;(@) as defined in (7) satisfies a law of large
numbers,

. 1 r .
plimp_, Tﬁ (0) —£(6;7s<)| = 0.

Proof. See Appendix A.2. O

3.2 Consistency and asymptotic normality of the exact estimator

Theorem 1 shows that under Assumptions Al and A2 we can find a limit function to which the
loglikelihood ¢T converges in probability. This provides easy to verify conditions for the validity
of assumption (iv) in Lemma 1. Together with the previous discussion of assumptions (i)-(iii),

we summarize our findings in the following theorem.

Theorem 2. Suppose Assumptions A1 and A2 hold and let ¢(0;7s+) be defined as in Theorem 1.

Furthermore assume that
(i) £(0;7s+) is uniquely mazimized at 6y € ©,
(ii) the parameter space © C RP is compact, and
(iii) the functions g, defined in (14) are continuous in 6 € ©.

Then, the maximum likelihood estimator
07 = argmax Lg(@)
0cO

18 consistent.

13



Proof. See Appendix A.2. O

We continue with proving asymptotic normality of 1 in a similar fashion by analyzing
assumptions (i)-(vi) of Lemma 2: Assumption (i) repeats the conditions of Lemma 1 and is
thus covered by the reasoning in the previous section. Similarly, (ii) is a direct result of choices
regarding the estimation process and (iii) can be reduced to twice continuous differentiability of
g+ w.r.t. 0. Assumptions (v) and (vi) follow from the existence of H(6) = Vggl(0; 75+ )(0) and the
assumption that 6y uniquely maximizes £(0; 75+ ). Both of these statements follow from according
modeling choices and from sufficient regularity of g;. Convergence of £7(8) to Vggl(0; 75+ )(0) is
achieved by a law of large numbers that follows from assumptions Al and A2 in the same way
as Theorem 1. Finally, assumption (iv) requires us to verify that the score function VQLZ;(G)
satisfies a central limit theorem. Wooldridge (1994) states that the score {Vol(0wy: 7 .)}ien is
a martingale difference sequence if the underlying time series Wy is dynamically complete in
distribution. This is true in our case as {W;}ien denotes a Markov chain. Furthermore, for
martingale difference sequences central limit theorems exist which satisfy assumption (iv) in
Lemma 2. For a more detailed discussion of time series maximum likelihood and corresponding
central limit theorems we refer to Wooldridge (1994). We summarize the above in the following

theorem.

Theorem 3. Suppose assumptions A1 and A2 hold and let €(0;7s) be defined as in Theorem 1.

Furthermore, assume the assumptions of Theorem 2 are fulfilled and that
(i) 6y € O,
(ii) g; € C2(N) for a neighborhood N of 0y for all t € N,

(11i) H(0) = Vool(0; 75+ )(0) exists and is non-singular.

Then, the mazimum likelihood estimator Or is asymptotically normal.

4 Large sample properties of the approximated maximum like-

lihood estimator with occasional observation

In the previous section, we have established that the exact maximum likelihood estimator is
consistent and asymptotically normal. However, as the likelihood usually does not permit a
closed-form solution it needs to be approximated, e.g., by the RLI method proposed in Gilch
et al. (2024). The maximum likelihood estimator based on the approximate likelihood will
differ from the exact likelihood estimator and hence, we must prove both large sample prop-
erties separately for the approximate estimator. To this end, we show that as the accuracy
of the likelihood approximation improves, the approximate estimator converges to the exact
one under weak regularity conditions. We provide rates for this improvement, ensuring that
the approximate estimator inherits both consistency and asymptotic normality from the exact

estimator.

14



4.1 Convergence properties of the RLI approximator

We begin by outlining the approximation properties of the generalized RLI approximation as
introduced in Section 2.2.7 Since, to the best of our knowledge, the RLI method is the only
computationally feasible alternative to non-deterministic simulation methods, this is necessary
to validate the applicability of our proof strategy in the subsequent section.

We use the following compact formulation of the recursive approximation scheme from Sec-
tion 2.2,

Ge(W, Wi—1,0) = ge(We, Wi—1,0) It (jt (Gt+1 (- W, 9))) (14)
fort =1,...,T7 — 1 and gy = g7, which includes all special cases regarding full observations
(7 = 7 and/or 74—1 = 7) implicitly. The approximated unconditional likelihood ngN of 6 given
the observations {wy r, }7; is then given by

LgN(0) = I (3 (-, 9)) - (15)

The additional superscript N denotes the set N = {ni,...,nr} and indicates the approxi-
mation levels chosen for the interpolation steps Z; and the quadrature steps I,: Most economic
models yield functional forms with sufficient regularity to assume the applicability of approxi-
mation rules with polynomial convergence rates, i.e., if the approximation uses n nodes, than
the approximation error is of order O(n~") for some r > 1. Note that this notation even includes
Monte Carlo simulation by setting r = % Therefore, w.l.o.g. we choose interpolation methods
I, which use nj; interpolation nodes and have some polynomial convergence rate Oy, (n;tr”),
and quadrature rules I, which use ng: quadrature nodes and have some polynomial convergence
rate Oy, (né:Qt).

For a given t the convergence properties of interpolation and quadrature may differ, i.e. rp; #
rQt, generating approximation errors of different magnitude if the same number of nodes (ng: =
nre) were chosen for both methods. In these cases, the computational effort of approximation
can be reduced by reducing the number of nodes used for the method, which converges quicker,
i.e., for which the corresponding rate r.; is larger. Similar to Reich (2018), we implement this
idea by choosing balancing parameters 9, s.t. ny; = nf;bt and ng; = nt1 Ve,

Given the respective rates rr¢, 7¢¢, the choices 1y = m’:ﬁ,Qt are optimal and yield the conver-

IO

- . This definition is independent of the actual integration
It+rQt

and interpolation dimension |7;| and the according choices of Z; and I, as only the asymp-

gence rate Og, (n, ") with r; =

totic convergence rates, given by 7., enter in the total approximation error. The notation Oy,
indicates that the implied constant in the Landau notation is dependent on the integrand g;.
Approximation errors also accumulate over t. Therefore, it is optimal to choose n; s.t.

n; " =n,"" for all t # ¢'. This can be achieved by considering the smallest 7, (over t = 1,...,T)

/Ty

and some series {nik)}k N with ngk) — oo for k — oo and setting ng‘;) = (ngk)> " We denote
€

the common convergence rate across t = 1,...,T by O(n™") = Og ,(n™") with the constant

depending on g; and a maximal length T of the integrated time series, i.e. T < T. Although we

9See Gilch et al. (2024) for a detailed treatment of the RLI estimator under occasional state observations.
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will later take T to infinity, this condition is not problematic for us as it is fulfilled naturally
by assumption Al. Finally, given at least r-times continuous differentiability and boundedness
of all g; and the appropriate choice of quadrature and interpolation methods, Proposition 2 of

Reich (2018) shows the convergence rate

r TN T _ —r
L, (0)— L, (0)]=0(Tn"") (16)
which is also applicable to our setup and the respective definition of ngTN examined in this

paper.

4.2 Consistency and asymptotic normality of the approximate estimator

We conclude by providing two theorems that transfer the results on large sample properties
of O to the approximate estimator f7y. We base our proof on a similar approach described
in Griebel et al. (2019) and cite their results as Lemma 3 and Lemma 4 in the appendix by

providing easy to verify conditions under which these lemmas hold.

Theorem 4. Let Lg and ﬁg’N be defined as above. Assume that (T (0;7) is defined as in

Theorem 1 and all assumptions of Theorem 2 are fulfilled. Assume further that
r TN T _ —r
L, (0) = L, (0)]=0(Tn™")

and that there exists § > 0 s.t. Pg(wt’z‘ﬂﬁs*) > forall 8 € O, Wir 7. € Sgl* X - X Sml.

Then the estimator 9~TN 18 consistent.
Proof. See Appendix A.2. O

Note that the assumption of lower boundedness for Pg(wngfs*) is practically equivalent to
compact support for the (occasionally) observed variables wy r,. This is a usual assumption in
related simulation methods and also a frequent precondition for proving large sample properties
in the HMM literature, where the state x; is never observed. In particular, this makes the
results in this section hold independently of the results in the previous section as we do not
require occasional observations for the approximated likelihood but can rely on existing results
for the exact estimator (see discussion in the introduction).

We complete this section with the proof of asymptotic normality of Orn. For this purpose,
we need to provide an intuition for the Jacobian ngfgpN and the Hessian VggI:gN of the
approximated likelihood and their convergence to V(;LZ and Vgng respectively. The gradient
of Lg is given by

T
VoLg (0) = / \Y <H gt(wt,uvt_l,e)) Wy - - - diby

T T -~
1,0
- Z (Hgs(ﬁ)&ws—bm) S )wT"‘dﬁq

Gt (Wg, Wy—1,0)
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Having set g; > 0, interchanging integration and differentiation is allowed if the g; are integrable
in Wy, w—1 for all § and the gradients Vyg; exist for all wy, w;—1 a.s. We define the likelihood

gradient contributions

Lg Vgt ) = / Hgs(wsaws—lae) Vé)gt(ﬁ)h@t—la@)dwT' . d’lIJl (18)
sF#t

such that Vng is given by

T
VQL Z Lg7vgt

Note that Lgv PRCE! function with image in R? but all its components have the same structure
as (8) just replacing g5 with Vygs for s = ¢t and otherwise leaving it the same. Now, the RLI

approximation scheme can be applied separately to each L? ¢ (6) (considering each component

v
of the p-dimensional function separately). Under similar az.suitnptions on the partial derivatives
é%gt fori = 1,..,pand t = 1,...,T as on g4, Proposition 2 of Reich (2018) holds for the
approximated gradient IA/?,@ " (9) with the same convergence rates. As mentioned in the paper, it
is not necessary to bound g; to below 1, but any finite bound suffices for the proof of Proposition
2. Hence, we also need to assume boundedness of Vyg; in order to establish convergence to

LT Summing up Lg v gt(9) over t provides the approximator

9,Vagt*

T
Veg Z 95 Vgt
=1

for V(;LZ(Q) which converges with rate (16) multiplied by 7":
LIN (6) — VLT (9)) —0 () .

Finally, we need to relate LTN to the Jacobian VgLTN The RLI scheme uses a combination
of interpolation and quadrature methods. Quadrature methods I are linear in their argument
(which is the integrand) by construction, hence VoI (f(-,0)) = 1(Vof(-,6)) for some function
f(-,0). The same holds for standard interpolation methods like Chebychev and Spline interpo-
lation which usually solve a linear system of equation in evaluations of the interpolated function
to obtain interpolation weights. Together this implies j—/gz;/g = ng)gw . A similar approximation
LN — Vggﬁ;‘]FN may be derived for Vgng to obtain the convergence rate O(T3n~"). We can

Voog —
now state asymptotic normality for Opp:

Theorem 5. Let LgT, f/gTN, and €7 (0; %) be defined as above. Suppose that all assumptions of

17



Theorem 3 are fulfilled. Furthermore, assume that

’LTN (6 ] —O(Tn™),
’Lveg ngT 9) ‘ =0 (T,
‘LVeeg( — VoL () ‘ = T3 ),

and that g is twice continuously differentiable in @ € © for all t € N. Then, Oy is asymptoti-

cally normal.
Proof. See Appendix A.2. O
The next corollary generalizes our results for non-compact state spaces.

Corollary 1. To do.
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A Appendix

A.1 Asymptotics for extremum and approximate estimators

We build our analysis on the standard presentation of results for large sample properties of
extremum estimators by Newey and McFadden (1994) for the first stage. For the second stage,
Griebel et al. (2019) provide a general framework for analysis of approximate estimators. In
both papers Qr(6) denotes an objective function utilizing k& data points which is maximized
over some parameter space © by the extremum estimator 0. This corresponds to the exact
likelihood LT and the exact likelihood estimator p. If Q1 (0) cannot be computed analytically,
it is approximated by an(Q) using an approximation method with n nodes and the approximate
estimator 0y, is its maximizer. This corresponds to the approximated likelihood LTV and the
approximate likelihood estimator Orn.

For reference, we cite Theorems 2.1 and 3.1 from Newey and McFadden (1994) for asymp-

totics of the exact estimator:
Lemma 1. Assume that there is a function Q(0) such that
(i) Q(0) is uniquely mazximized at 0y,

(ii) the parameter space © is compact,

(i1i) Q(0) is continuous,

(iv) the function Qr(0) converges uniformly in probability to Q(0).
Then, ék is a consistent estimator of Oy, i.e. plimy _, ék =0p.
Lemma 2. Suppose that there exists a function Q(0) s.t.

(i) the assumptions of Lemma 1 hold,

(ii) 6y € O,

(iii) Qr(0) € C*(N) for a neighborhood N of 0,

(iv) VEVsQu(fo) 5 N(0,5),

(v) there exists a function H(6) which is continuous at 6y s.t.

sup || Voo Qr(0) — H(0)]| 5 0,
0eN

(vi) H = H(6y) is non-singular.
Then 0y, is asymptotically normal, i.e. \/E(ék —6p) LA N, H'>H™).

For the approximate estimator, we continue by citing Theorem 2 and 4 from Griebel et al.
(2019):

Lemma 3. Assume that there exists a function Q(6) such that
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(i) the assumptions of Lemma 1 are fulfilled, and

(ii) Qun(0) converges uniformly in probability to Qi (0), i.e.

plimy, _, . sup an(ﬁ) —Qr(0)]=0.
0cO

Then, ékn is a consistent estimator of 6y, i.e. plimy_, ékn = 0.
Lemma 4. Assume that there exists a function Q(0) s.t.
(i) the assumptions of Lemma 2 are fulfilled,
(ii) condition (ii) of Lemma 3 holds,
(iii) Qpn(0) € CEHN) almost surely,
(iv) plimy,_, oo VE suppee |[VoQrn () — VoQi(6)|| = 0,
(v) plimy, _, o supgee || VosQun(0) — VagQr(8)|] = 0.

Then 9kn 18 asymptotically normal with the same limit distribution as ék

A.2 Proofs for Sections 3 and 4

This section contains the proofs for Theorems 1-5.

A.2.1 Proof of Theorem 1

Proof. Step 1: We redefine the set 7 = {t € T | 7v = 7} to be the subset of periods in which
wy is completely observed and let S > 1s.t. S+1 = |T| (note that 1 € T is always assumed).'’
By Assumption Al, at least every T-th period features a completely observed w; hence S > %
We number the periods of complete observation in an ascending order, 1 =ty < t; < ... < tg
and assume w.l.o.g. that the last period T also features a completely observed wr, i.e. tg =T.
Finally, the interval lengths are given by sx = ¢, — t5_1 for k = 1,...,.S such that by definition
S s, =T and by Al s, < T for all k.

Step 2: Take the logarithm of Lg to obtain the loglikelihood ¢7" = log L;. Using (8) and

10T his is consistent with our previous definition of 7 which had d, = 1 and thus any observation was equivalent
to a complete observation.
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the same argument as for (13) we get the decomposition into likelihood contributions,

0) =0 | {wer i)
=log L (9| {wt i)

log/ Hgt (W¢, We—1,0)ddr - - - diy
(St 2

Tt

o [ / oy T o iy - divy
k=0

t=tp,+1°t t=f,+1
S—1 B
t
~3 ¢ (9 | {wm}t';;i) . (19)
k=0

k+1

Each likelihood contribution utilizes the set of observations {w; Tt} teg, S all such sets only

overlap at the complete observations Wy 75, Whkr -

Step 3: From S > % it follows that S — oo if T — co. Together with s, < T this implies
that there exists s* s.t. s = s* for infinitely many k. We assumed that S is of fixed dimension
d < oo, hence for every interval of length s* there are up to (s* — 1)d single variables wy;,
t =1t +1,...,t, + s — 1 that may or may not be observed by the econometrician. As for the
existence of s* it is easy to see that there is at least one set 75« = {(s,i) | 1 < s <s*—1,1 <
i <d,} s.t. given S — oo for infinitely many #; the variable wyz, ., is observed if and only if
(s,i) € Ts+. In other words, we first claim that among all possible lengths of intervals s; < §
there is at least one, denoted by s*, that must occur infinitely many times if T tends to infinity.
Secondly, there are only finitely many patterns of occasional observations of wy; in each of these
intervals of length s*, so for T— oo (i.e. S — 00) at least one of these patterns (characterized

by 7¢+) must realize infinitely many times. We can now define the subset
T ={t"eT |t"+seT,xp,,; observediff. (s,i) €=} CT CT

and number its elements in ascending order #§ < ¢ < ... < t¥§.. In particular, S* = |T*|. This

yields the homogenous loglikelihood function

T(9; #,-) ZE( ‘{wt Tt};ﬂ) . (20)

Step 4: (7(#;7s) is homogenous in the sense that all likelihood contributions contain
information on exactly the same variables and therefore have the exact same structure regarding

the conditional probabilities Py. We define a compact notation

T o
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for the sets of observations between complete observations ¢ and t;,; and rewrite (20) as

S*
(T(6; 75:) = > log Py(zs 5.) -
=1
By Assumption A2, the time series {wt—;@* }en is also stationary and ergodic and hence by the

Ergodic theorem the likelihood ¢7'(6; 7,+) fulfills a weak law of large numbers

1
S*

plimg« _,

ET(Q;’]A'S*) —E IOgPQ(U_]t_?,i_S* )] ‘ =0.

Step 5: If s* and 7, are unique, then all other interval lengths s < T and observation pat-
terns 7 for intervals of length s only appear finitely many times. This implies 7 () — 7 (0; 7¢+)

and % — 1 as T'— oo and hence %KT also converges to
0(0;7¢) = E |log Pg(?j}gfﬂas*) (21)

in probability where £(; 75« ) is independent of [ by Assumption A2. This result can be extended
to the case with multiple 75+« (with possibly different s*) by determining the relative frequencies

az , of the individual 74+ w.r.t. each other. Then, the limit function is the weighted mean
U0370) =Y 0z,. E |log Pyl 5,.)
o

(s~1)

with Z%S* s, = 1. Both sums are finite as there are at most > .. .7 2¢ possible different

observation patterns under Assumption Al. O

A.2.2 Proof of Theorem 2

Proof. We have defined ¢7 as logarithm of Lg, hence Lg = exp/T. Theorem 1 gives us a law

of large numbers for %ET which yields the following law of large numbers for Lg
plimy_, oo | LT (0)T — exp (£(6; 7)) | = 0

due to continuity of exp. Monotonicity of exp implies that LZ is also uniquely maximized by
0p. Put together, and considering the discussion of Assumptions (i)-(iii) of Lemma 1 at the

beginning of Section 3, consistency of 67 follows directly from Lemma 1 and Theorem 1. O

A.2.3 Proof of Theorem 4

Proof. We show consistency by proving that the Assumptions (i) and (ii) in Lemma 3 hold for
Q. and Qp,. Assumption (i) was already discussed in Section 3, hence it remains to show (ii).

Instead of using L;F we use ¢1 for this purpose and define its approximator

S—1
0™N(0) =log LTN(0) = > log LN (6)
k=0
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with S and s; as in the proof of Theorem 1 and ﬁ;kN () being the RLI approximator of
14 (9 | {wr, }i’“;{;) from equation (19). Focusing on the case with unique s* and 74+, we get that

trt1

s = s* and {we, } i—f, = W 7. almost always and hence asymptotically

S*
0PN (9) =T ITN (0 740 ) = Z log L ™ (6w 2,.) -
=1

Here f/f]*N (9|U_}{z«’+s*) is the approximation of Pg(lt_}g;«;,:s* ). We can now follow the proof of Theo-
rem 7 in Griebel et al. (2019) to show

lim P <sup
T— 0cO

1 1
TETN(H) - Tﬂ(@)‘ > a> =0.

We can use the lower bound on Pg(’u_)gl*fs*) to apply a mean value theorem and obtain

sup
0cO

1 TN 1 T 1 Fs*N — —
V) < 20 < sup swp 52w, ) - Pola )
1°7s*

<O(s'n™") (22)

with the convergence rate from (16). The supremum over 6 is gained from compactness of ©
and continuity of g; in §. Note that any increasing function n = n(T') is sufficient to let the term
(22) decrease to 0 as T'— oo. This proves Assumption (iii) of Lemma 3 and hence consistency
of Ory (as maximizer of 7N and thus also of ﬁgN ).

O

A.2.4 Proof of Theorem 5

Proof. We show asymptotic normality by proving Assumptions (i)-(v) of Lemma 4: Both (i)
and (ii) are given by assumption and are discussed in the proofs of Theorems 3 and 4. Twice
differentiability of f,gTN follows from twice differentiability of g;. This is an innocuous assumption
as most economic models (and thus the resulting likelihood functions) feature smooth functions.
Additionally, standard interpolation functions also require and return at least twice continuously
differentiable inputs and outputs respectively in order to achieve polynomial convergence rates

which we require anyway.

TN .
Vogg*

these into the respective conditions (iv) and (v) and obtain the requirements O(T?°n=") -0

Assumptions (iv) and (v) follow from the convergence rates of IA/:%VQ and L We plug
and O(T3n~") — 0 for T — co. Practically, the longer sample is associated with more summands
in the chain rule for the Jacobian and Hessian, as can be seen in Equation (17). Each summand
adds an individual independent error term of order O(Tn™") or O(T?n~"), respectively. To
counteract this accumulation of errors, the approximation itself has to improve as T — oo.
However, if the approximation has high polynomial convergence order r, then this can be
achieved by only a moderately fast growing function n = n(7T). In fact, any function n(T")
of at least rate T3+9)/" with & > 0 is sufficient for this purpose. O
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