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Abstract

Estimating Markov models with hidden state variables presents significant challenges

because the likelihood involves a high-dimensional integral over the unobserved states.

This complication renders the standard approach to prove the asymptotic properties of

the likelihood-based estimator infeasible, because it relies on a log-transformation of the

likelihood function. Moreover, the need to numerically approximate the integral in the like-

lihood function introduces an additional source of error in the estimation process. In this

paper, we demonstrate how occasional observations of the hidden state restore the feasibil-

ity of the log-likelihood approach for establishing asymptotic properties, thereby extending

existing results to general state spaces for the hidden state. Further, we show that, given
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extended to the estimator based on the approximated likelihood.
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1 Introduction

The estimation of structural dynamic economic models often encounters limited data availability,

having certain state variables observed only intermittently across time periods. We refer to such

state variables as occasionally observed.1 In maximum likelihood estimation, when a realization

of a state is not observed by the econometrician, but has (potentially) been relevant for the

decision maker, it must be marginalized by integrating it out of the density of the data that

induces the likelihood of the parameters to be estimated. However, if the occasionally observed

states are serially correlated—as it is typically the case in realistic dynamic models—this integral

tends to be high-dimensional, and cannot be decomposed analytically into smaller integrals.

This results in two issues: First, the integral structure of the likelihood makes the application

of a law of large numbers on the log-likelihood impossible; thus, even if the integral can be

computed in closed form, the large sample properties of this exact estimator are not ex ante

innate. Second, since the former assertion typically fails to hold in concrete applications, the

integral has to be approximated numerically; consequently, the approximate estimator is subject

to an additional source of error, making its asymptotic properties even more ambiguous.

For some special classes of models, the literature has developed the asymptotic theory for

estimators based on integrated likelihoods that justify their application, most notably the hidden

Markov models (HMMs) literature. However, while the latter has indeed established consistency

and asymptotic normality for HMMs, it remains restrictive in three key aspects: First, it assumes

complete unobservability of at least one state variable, and thus fails to fully exploit the available

data in the presence of occasional observations. Second, it imposes limitations on the form of the

transition density; specifically, HMMs rely on a conditional independence assumption, wherein

the observed states at a given period t are independent of observations from other periods—

particularly from t−1—given the unobserved state at period t. Third, the results typically rely

on the restrictive assumption that the domain of the unobserved states is effectively compact,

which is prohibitive for many economic models where random unobserved components are often

drawn from an auto-regressive distribution with normal innovations whose support is the real

line.

Gilch et al. (2024) address the three limitations by demonstrating how to incorporate occa-

sional observations into the likelihood function, while accounting for potential endogeneity aris-

ing from the inter-dependency between observability and the realization of the state variables.

To evaluate the resulting function numerically, they invoke a recursive likelihood integration

method (RLI; originally due to Reich, 2018), thereby enabling likelihood-based inference in the

presence of occasionally observed states. In this companion paper to Gilch et al. (2024), we

provide the large sample properties of the proposed estimator, which justify its use theoretically.

In particular, we exploit the presence of occasional observations to establish consistency and

asymptotic normality of the exact estimator for general state domains, including the (full) real

line, and for general transition densities under mild regularity requirements.2 Moreover, since

Gilch et al. (2024) apply numerical methods that are naturally subject to approximation error,

1Hall and Rust (2021) refer to such variables as endogenously sampled.
2Hall and Rust (2021) establish asymptotic results for a simulated method of moments estimator, applicable

to a similarly general class of models compared to ours.
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we apply and extend the proof strategies of Griebel et al. (2019) to demonstrate that also the

approximate estimator remains both consistent and asymptotically normal.

Consistency and asymptotic normality of the maximum likelihood estimator (MLE) in hidden

Markov models (HMMs) have been the subject of significant research. The foundational work

of Baum and Petrie (1966) establishes these properties for HMMs with finite state spaces and

introduces the influential ”infinite-past” proof strategy, which serves as a cornerstone for much

of the subsequent literature. Building on this, Leroux (1992) and Bickel et al. (1998) extend

the consistency results to HMMs where the hidden state space remains finite, but the obser-

vation space is allowed to be general. Further advancements include the work of Douc et al.

(2004), who study autoregressive HMMs, introducing an additional dependency channel from

past observations. They demonstrate both consistency and asymptotic normality under the

assumption that the hidden state space is compact and the observation space is general. Cappé

et al. (2005) generalize these results by addressing HMMs with completely general state spaces

for both the hidden and observed variables, though their results hinge on specific conditions on

the transition probabilities, which may not always hold in practice. Douc et al. (2011) refine the

understanding of consistency by removing the assumption of uniform positivity, i.e., de facto

compactness of the state space, which was prevalent in earlier analyses.

We contribute to this literature by leveraging occasional observations of the hidden vari-

able to eliminate the compactness assumption on the state space for establishing both the

consistency and asymptotic normality of our estimator. Notably, we do not impose the spe-

cific structure of hidden Markov models, thereby extending existing results to address the large

sample properties of general Markov models with occasionally observed states. Note that max-

imum likelihood estimation inherently assumes point identification of the analyzed model—and

so do we. Restricting oneself to a certain class of models may allow the econometrician to

apply non-likelihood based estimation approaches that circumvent this assumption. E.g., for

dynamic discrete choice models, Kasahara and Shimotsu (2009) present conditions that imply

non-parametric identifiability, while Berry and Compiani (2020) use an instrumental variables

approach to show identification in dynamic models from the IO literature. For HMM, Cappé

et al. (2005) discuss classes of transition densities for which identifiability can be derived and

Douc et al. (2011) provide an information-theoretic argument, which yields identifiability under

certain conditions.

Despite the extensive literature on the asymptotic properties of the exact likelihood estima-

tor, relatively little attention has been given to how these properties carry over to estimators

based on approximate likelihoods. Broadly, approximation methods for these integrals fall into

two categories. The first consists of simulation-based approaches, such as particle filter meth-

ods, which simulate possible sequences of the unobserved states to construct a Monte Carlo

approximation of the likelihood. For these methods, the established literature on simulated

maximum likelihood provides starting points for a deeper theoretical analysis. The second cat-

egory involves numerical integration methods, which are deterministic and highly efficient but

inherently subject to the curse of dimensionality. Unlike simulation-based methods, these de-

terministic approximations exhibit a non-vanishing error when the number of integration nodes

3



is fixed. The approximation error decreases only as the accuracy of the approximation improves

asymptotically. Importantly, this error does not only increase the variance of the estimator but

introduces a bias that cannot be controlled when using a small number of approximation nodes.

This situation calls for a dedicated analysis of estimators based on approximated likelihoods,

as pioneered by Griebel et al. (2019).

We base our proofs on the presentation in Newey and McFadden (1994) for extremum es-

timators, and recent results by Griebel et al. (2019) for the estimators including the numerical

approximation of an integral in their definition. A key feature of these findings are assumptions

about regularity of the likelihood function and conditions regarding the search domain for the

estimated parameters. We show how to use these conditions to obtain consistency and asymp-

totic normality for the approximate estimator of Markov models with occasionally observed

state variables.

The remainder of this paper is organized as follows: In Section 2, we first present Markov

models with occasionally observed state variables in a general framework and then introduce the

recursive likelihood integration approach. In Section 3, we proof consistency and asymptotic

normality of the exact estimator based on the frequency of the occasional observations. In

Section 4, we provide conditions under which both properties also hold for the approximate

estimator.

2 Markov models with occasionally observed states

In this section we present the general likelihood for Markov models with occasionally observed

states and demonstrate the potential challenges for deriving large sample properties of the

maximum likelihood estimator. For this, we first use a simplified setting with only two state

variables—one that is always observed and one that is only observed occasionally. We show that

the likelihood forms a high-dimensional integral over a non-standard domain. This simplified

example allows us to demonstrate how the integral structure of the likelihood interferes with the

standard loglikelihood approach for showing asymptotic properties of the maximum likelihood

estimator. Afterwards, we generalize our notation to include an arbitrary number of state

variables with general observation patterns. Note that in this section we closely follow the

notation of the companion paper Gilch et al. (2024) to demonstrate the applicability of our

results to the RLI estimator proposed in Gilch et al. (2024). Hence the presentation and

derivation of the likelihood in this paper does not form a contribution in itself.

2.1 The likelihood in a simplified model with one-dimensional states

Consider a discrete-time Markov process {yt, xt}—possibly controlled, like in dynamic discrete

choice models—with two one-dimensional state variables, yt, xt ∈ R, and a parametric family

of transition probability functions, P (yt, xt|yt−1, xt−1; θ). We want to estimate the model pa-

rameter θ using a maximum likelihood approach. In particular, we are interested in a case of

limited data availability, where the variable yt is observed for all periods t ∈ T ≡ {1, . . . , T} of

the sample, whereas xt is observed only at the times t ∈ T̄ with T̄ ⊆ T .

To introduce basic notation and the fundamental treatment of unobserved states, let us
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first consider two counterfactual cases: Under full observability for both states xt and yt—i.e.,

T̄ = T —the (unconditional) likelihood function of the parameter vector θ reads

LT (θ) = P ({yt, xt}t∈T ; θ)

= P (y1, x1|θ)
T∏
t=2

P (yt, xt|yt−1, xt−1; θ), (1)

where P (y1, x1|θ) is the stationary distribution of xt (if available). Conversely, if no state

observations on xt are available—i.e., T̄ = ∅—the likelihood function forms an integral with

respect to the unobserved state,

LT (θ) = P ({yt}t∈T ; θ)

=

∫
· · ·
∫
ST
x

P (y1, x̃1|θ)
T∏
t=2

P (yt, x̃t|yt−1, x̃t−1; θ) d(x̃1, . . . , x̃T ) . (2)

Here and in the following, we decorate any integration variable with a tilde; in (2), we write

x̃t to clearly distinguish them from any data set element or state variable, xt. Note that the

overall dimensionality of the integral in (2) is proportional to the time horizon of the data, T .

Thus, computing this integral constitutes a delicate task.

Suppose we have a single observation xt̄ at t̄ that lies in the “interior” of T —i.e., 1 < t̄ < T

and T̄ = {t̄}. If we were to integrate the likelihood as in (2), the domain of integration in

the likelihood function would read {(x̃1, . . . , x̃T ) ∈ STx : x̃t̄ = xt̄}, which is no longer a full-

dimensional subset of STx (for general state spaces Sx), and thus potentially creates ill-defined

integrals. Therefore, we rewrite the integral to explicitly exclude the integration variable x̃t̄ and

only integrate w.r.t. the unobserved states x̃t for t ∈ T \ T̄ :

LT (θ) =

∫
· · ·
∫
P (y1, x̃1|θ)

(
t̄−1∏
t=2

P (yt, x̃t|yt−1, x̃t−1; θ)

)
P (yt̄, xt̄|yt̄−1, x̃t̄−1; θ)

· P (yt̄+1, x̃t̄+1|yt̄, xt̄; θ)

 T∏
t=t̄+2

P (yt, x̃t|yt−1, x̃t−1; θ)

d(x̃1, . . . , x̃t̄−1, x̃t̄+1, . . . , x̃T ) .

(3)

In the companion paper, Gilch et al. (2024), we use the likelihood (3) to illustrate three key

challenges that arise when estimating dynamic models with occasional state observations. First,

observation of xt may depend on the realization of the variable itself, meaning that whether

or not we observe xt could convey information about its value. Ignoring this dependency in

constructing the likelihood can lead to biased estimators. Second, the integral in equation

(3) is numerically challenging, as its dimension grows proportionally with the time horizon T ,

subjecting numerical quadrature methods to a curse of dimensionality. Third, due to the integral

structure, the asymptotic properties of the likelihood estimator are not ex ante clear because

the standard log-likelihood approach to proving these properties is infeasible. Additionally, the

estimator based on the approximated likelihood integral also includes an approximation error,

making its asymptotic properties even more difficult to characterize.

We discuss the first and second challenges in Gilch et al. (2024), so we will not explain them
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in detail here. To summarize, the first challenge is addressed by incorporating information

about the observation process—specifically, the mechanism determining whether xt is observed

or not—into the likelihood formulation. Regarding the second challenge, Gilch et al. (2024)

introduces a generalized version of the recursive likelihood integration (RLI) method developed

by Reich (2018). This approach effectively avoids the curse of dimensionality and provides

a highly efficient deterministic approximation of the likelihood as is demonstrates in several

applications from the finance and IO literature.

Although we do not discuss the challenges in detail, we introduce the mechanism and no-

tation of the RLI method in this paper for two reasons. First, to our knowledge, it is the only

practical implementation of a deterministic algorithm for computing the likelihood integral.

Therefore, in order to demonstrate the relevance of our theoretical results we discuss how its

fast convergence properties can actually improve estimation compared to simulation approaches.

Second, for asymptotic normality, our proof requires approximations of the Jacobian and the

Hessian with sufficient convergence rates. In Section 4.2, we show how the RLI method can

provide these approximations.

The third challenge—the large-sample properties of the maximum likelihood estimator—can

be addressed in two parts: first, demonstrating how occasional observations establish the asymp-

totic properties of the estimator based on the exact integral; and second, showing that the RLI

approximation (or any similar approximator with comparable convergence properties) does not

distort these properties in the limit. In the following sections, we illustrate both approaches

using an example with a single observation.

To proceed, we first introduce the two estimators central to our analysis. The exact estima-

tor, θ̂T , is based on the exact likelihood LT , which is generally not attainable because LT does

not admit a closed form,

θ̂T = argmax
θ∈Θ

LT (θ). (4)

This estimator is indexed by T , the length of the time series, which we let approach infin-

ity to establish its asymptotic properties. The approximate estimator, θ̃TN , is based on the

approximated likelihood L̃TN , defined formally in the next section,

θ̃TN = argmax
θ∈Θ

L̃TN (θ). (5)

It is indexed by both T (the time dimension) and N , representing the numbers of nodes used

in each computation step of the approximation and, thus, representing the accuracy of the

approximation. We formally define N in Section 4.1.

Failure of the standard loglikelihood approach. In the standard setup with fully ob-

served xt, asymptotic properties of the likelihood estimator θ̂T are obtained by taking the

logarithm of the likelihood (1),

logLT (θ) = logP (y1, x1|θ) +
T∑
t=2

logP (yt, xt|yt−1, xt−1; θ).
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Taking the sample size T to infinity, consistency is derived using a law of large numbers and

asymptotic normality follows from a central limit theorem.

In the case of occasional state observations, this approach is not applicable: Taking the

logarithm of the likelihood (3) does not yield a sum over t summands, but rather a sum of only

two summands, as the logarithm and the integral cannot be interchanged:

logLT (θ) = log

∫
· · ·
∫
P (y1, x̃1|θ)

(
t̄−1∏
t=2

P (yt, x̃t|yt−1, x̃t−1; θ)

)
P (yt̄, xt̄|yt̄−1, x̃t̄−1; θ) d(x̃1, . . . , x̃t̄−1)

+ log

∫
· · ·
∫
P (yt̄+1, x̃t̄+1|yt̄, xt̄; θ)

 T∏
t=t̄+2

P (yt, x̃t|yt−1, x̃t−1; θ)

 d(x̃t̄+1, . . . , x̃T ) .

(6)

Of course, with a fixed number of observations (here: one), we do not obtain the infinite sum

required to derive the desired properties of the estimator when taking T to infinity. Instead,

it is only the dimension of the integral that becomes larger, and convergence is in our gen-

eral framework—to the best of our knowledge—unclear. This makes asymptotic statements

impossible, even if we were able to compute these integrals exactly.

However, in Section 3 we show, that it is possible to recover the asymptotical results known

from many other log-likelihood-based estimators, if the number of occasional observations,

S ≡ |T̄ |, also tends to infinity as T grows. Then, these asymptotics can be derived based on

the joint probability of all states between two observation periods, P
(
{yt, xt}t̄i+1

t=t̄i+1
|yt̄i , xt̄i ; θ

)
.

Importantly, this approach rests on the assumption that the period of non-observation between

two full observations of xt is bounded.
3 In Section 3.1, we formalize this setup as Assumption

A1 and discuss its implications in often encountered applications.

Error due to approximation As mentioned above, our likelihood cannot be evaluated an-

alytically and is therefore approximated numerically by some function L̃TN . Consequently, the

estimator we are actually interested in is not the maximizer of (6), θ̂T , but rather the max-

imizer of this approximated likelihood, θ̃TN . However, since LT ̸= L̃TN implies θ̂T ̸= θ̃TN ,

approximating the likelihood introduces an additional deterministic error—one that does not

vanish as the sample size grows—into our estimator. This approximation error compounds the

estimator’s stochastic estimation error, affecting its asymptotic properties.

The consistency and asymptotic normality of θ̃TN can be derived if both properties hold for

θ̂T and if the error ||θ̂T − θ̃TN || vanishes in the limit. With the first condition being adressed in

Section 3, we cover the second condition in Section 4: The idea behind our proof of the second

condition is to improve the accuracy of the approximation in proportion to the length of the

time series, meaning that N , the number of approximation nodes, should increase alongside T ,

the sample length. By doing so, as T →∞, the approximate estimator converges to the exact

estimator at the same rate at which the exact estimator converges to the true parameter. The

pace at which N needs to increase to achieve this convergence rate depends on the convergence

properties of the approximation method yielding L̃TN ; for example, a fast-converging method

3Here, full implies that in the case of a occasionally observed state vector xt all components of this vector are
observed at the same time.
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like the RLI algorithm requires only a relatively gradual increase in N , proportional to T .

2.2 The likelihood and its approximation in the general model

We introduce a general notation to formulate the likelihood function of a Markov model with

serially correlated states, where some (or all) of the model states are observed only occasionally.

In fact, the notation presented below allows for arbitrary observations patterns both w.r.t. time

and the state space dimension. Again, we follow closely the notation and presentation in the

appendix of the companion paper Gilch et al. (2024), which establishes the RLI algorithm for

occasionally observed states.

In contrast to the previous section, we consider observed variables Yt and occasionally ob-

served variables Xt jointly to allow for general observation patterns and simplify notation in

this section. Hence, we consider a stochastic process {Wt}t∈N, where the random vector has

support S ⊆ Rd, which we refer to as the “state space”.4 Note that we restrict our attention to

continuous state variables here, as all concepts we present below have simple analogues in the

discrete case.

We assume the Markov model explaining {Wt} to define a parametric family of (conditional)

distributions, which can be represented through probability density functions

P
(
Wt | {Ws}s<t ; θ

)
= P (Wt | Wt−1; θ)

with θ ∈ Θ ⊂ Rp.5 In order to precisely express the observation pattern of a dataset, we

introduce some more notation: Let wτ0 ≡ (wi)i∈τ0 denote the sub-vector of states for some

index set τ0 ⊆ τ ≡ {1, . . . , d}. Moreover, we write τ̃0 ≡ τ \ τ0 for the complement of τ0 w.r.t.

τ , and we express the number of dimensions of wτ0 using the cardinality operator |τ0|. Finally,
note that if we write (wτ0 , wτ̃0), we tacitly assume the elements to be re-ordered appropriately

so that (wτ0 , wτ̃0) = w, including the special cases (wτ , w∅) and (w∅, wτ ).

This notation allows us to define the observation pattern of a dataset as follows: For an

observation horizon {0, . . . , T}, the set of index sets {τt}Tt=0, τt ⊆ τ , specifies which dimensions

of the state vector w are observed at each point in time t,6 and we denote the dataset by

{wt,τt}Tt=0. Note that in order to distinguish entries of the dataset from generic sub-vectors of

states such as wτt , we have equipped the former with another time subscript besides the index

set. This notation also allows us to implicitly distinguish completely, never, and occasionally

observed variables and thus ties it back into the context of the previous section: A completely

observed variable wti has i ∈ τt for all t ∈ T , an unobserved variable has i ∈ τ̃t for all t and a

variable is occasionally observed if neither holds. At each point in time t, the state realizations

4We abstract from the more general case which supposes time-heterogenous dimensionality of the state space
in favor of a lighter notation. As the integration dimension will vary over time due to occasional observations of
Wt = wt this extension is straight-forward.

5The density Pθ can, of course, be time-dependent, but we spare the additional index here, as our notation
encompasses this feature—theoretically—through a deterministic, discrete state.

6Note that in the outline of this section, we use a single index set T to denote the points in time where
an observation of a single state takes place. Here, each point in time has its own index set τt, specifying the
dimensions of the state space which are observed at time t.
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are an element of the subset

St ≡ {w ∈ S : wτt = wt,τt} ,

which “binds” the observed dimensions to the values from the dataset. Note, though, that not

necessarily all elements in St have non-zero probability density. For the integration over the

unobserved dimensions, we also need the projection of St to the lower-dimensional space where

the unobserved dimensions live:

S̃t ≡
{
w̃ ∈ R|τ̃t| : w̃ = wτ̃t , w ∈ St

}
.

We write S̃t = ∅ if τt = τ and thus τ̃t = ∅. The (unconditional) likelihood of the model under

observation regime {τt}Tt=0 reads

LTg (θ) ≡ L(θ|{wt,τt}Tt=1)

=

∫
· · ·
∫
×T

t=1S̃t

T∏
t=1

P
(
w̃t, wt,τt |w̃t−1, wt−1,τt−1 ; θ

)
dw̃T . . . dw̃1 (7)

=

∫
· · ·
∫
×T

t=1S̃t

T∏
t=1

gt (w̃t, w̃t−1, θ) dw̃T · · · dw̃1 (8)

and thus resembles the definition of LTg in Reich (2018). The functions gt : S̃t × S̃t−1 ×Θ→R
are defined by

gt(w̃t, w̃t−1, θ) ≡

P
(
w̃t, wt,τt |w̃t−1, wt−1,τt−1 ; θ

)
if t > 1

P (w̃1, w1,τ1 |θ) if t = 1

s.t. the dependence of the integrand on the data is implicitly given in the subscript t of gt. Note

that both S̃t and w̃t can be empty if τt = τ , i.e., gt, gt+1 are constant in w̃t and no integration

w.r.t. w̃t takes place. Using the Markov structure of the model and standard regularity condi-

tions for gt,
7 a Fubini–Tonelli theorem (the concrete version of it depending on the nature of

S) justifies a recursive formulation of (8),

φθt ∈ R+ :


1 t > T

gt (wt|wt−1; θ)φ
θ
t+1 τt = τ∫

S̃t
gt ((w̃, wt,τt)|wt−1; θ)

· fθt+1(w̃)d
|τ t|w̃

otherwise


τt−1 = τ

fθt : S̃t−1 → R+, w 7→


1 t > T

gt
(
wt|(w,wt−1,τt−1); θ

)
φθt+1 τt = τ∫

S̃t
gt
(
(w̃, wt,τt)|(w,wt−1,τt−1); θ

)
· fθt+1(w̃)d

|τ t|w̃
otherwise


otherwise,

(9)

7These follow from the fact that gt is derived from a conditional p.d.f. which tend to be continuous and
bounded in most economic applications.
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and the final likelihood reads

L(θ; {wt,τt}Tt=1) =

gt (w1; θ)φ
θ
2 τ1 = τ∫

S̃1
gt ((w̃, w1,τ1); θ) f

θ
2 (w̃)d

|τ1|w̃ otherwise.
(10)

While formulation (9) is exact, it is not practical for implementation purposes for the fol-

lowing reasons:

1. Actually evaluating the final likelihood—and thus evaluating either fθ2 or φθ2—would still

require traversing a tree with T − 1 levels and potentially infinitely many “knots” at each

level; thus its computational complexity would explode.

2. No explicit use is made from the knowledge of the observations wt,τt to determine the

conditional distribution of wτ t .

To address issue 1, we introduce a mapping between two function spaces Bn and Pn, whose
elements are real functions of n-dimensional arguments, and with all elements in Pn having a

complete representation through a countable set of parameters:

In : Bn → Pn, f 7→ f̂,

where

f, f̂ : Rn ⊇ D → R,

and with the norm ∥f − f̂∥ being “small” in the appropriate sense.

As indicated in issue 2, knowledge of wt,τt can be used in many instances to obtain “high den-

sity regions” for wτ t by conditioning its distribution on wt,τt . This can often be exploited when

numerically approximating the integrals in (9), e.g., by placing the nodes of quadrature rules

accordingly. Therefore, we rewrite the relevant cases, conditioning the integrated probability

densities on the observed states; note that in practice, this is not always possible.
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Consequently, the final likelihood function recursion reads

φ̂θt ∈ R+ :



1 t > T

gt (wt|wt−1; θ) φ̂
θ
t+1 τt = τ∫

S gt (w̃|wt−1; θ) f̂
θ
t+1(w̃)d

nw̃ τt = ∅
gt (wt,τt |wt−1; θ)

·
∫
S̃t
gt (w̃|wt,τt , wt−1; θ) f̂

θ
t+1(w̃)d

|τ t|w̃
otherwise


τt−1 = τ

f̂θt : S̃t−1 → R+, w 7→



1 t > T

gt
(
wt|(w,wt−1,τt−1); θ

)
φ̂θt+1 τt = τ

I|τ t−1|

( ∫
S gt

(
w̃|(w,wt−1,τt−1); θ

)
· f̂θt+1(w̃)d

nw̃
) τt = ∅

I|τ t−1|

(
gt
(
wt,τt |(w,wt−1,τt−1); θ

)
·
∫
S̃t
gt
(
w̃|wt,τt , (w,wt−1,τt−1); θ

)
· f̂θt+1(w̃)d

|τ t|w̃
) otherwise



otherwise,

(11)

and the actual likelihood can be computed analogously to (10).

3 Large sample properties of the exact maximum likelihood es-

timator with occasional observations

In this section, we establish the consistency and asymptotic normality of the exact estimator

θ̂T based on the true likelihood LT . With occasional observations, we can decompose the

likelihood integral over all unobserved states into a product of integrals, each covering only a

single segment of unobserved states. Our primary assumption is that the mean (or maximum)

duration between two periods in which all state variables are observed remains bounded—a

condition that is trivial for a single occasionally observed state in most applications. Under this

assumption, the proofs of consistency and asymptotic normality follow from basic stationarity

and ergodicity arguments.

3.1 Assumptions on the observation pattern

The standard approach to proving the consistency of maximum likelihood estimators relies

on three key assumptions:8 the uniform convergence of the likelihood function to a limiting

function, the continuity of this limiting function, and its unique maximization over a (compact)

parameter space, which ensures the identification of the estimation problem. For asymptotic

normality, similar conditions are required for the derivatives of both the likelihood and the

limiting function. For a detailed discussion see Newey and McFadden (1994). In Appendix A.1,

we restate their Theorems 2.1 and 3.1, which provide conditions for consistency and asymptotic

normality of the maximum likelihood estimator, as Lemmas 1 and 2 in order to reference them

8This approach also applies to the broader class of extremum estimators.
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in our proofs where necessary.

The main challenge of this approach is to identify the limit function to which the likelihood

(3) converges as T →∞. The remaining two conditions—summarized in assumptions (i)-(iii) of

the Lemmas 1 and 2—depend on the researcher’s modeling choices, and we take them as given in

this paper. However, the difficulty with establishing the limit function arises specifically from

the structure of the likelihood and hence a general treatment of this condition is necessary.

Standard econometric theory treating maximum likelihood estimation uses the loglikelihood

to apply the law of large numbers that in turn provides uniform convergence of LTg . Given a

dataset w1, . . . , wT , a generic loglikelihood would take the form

logL(θ|w1, . . . , wT ) =
T∑
t=1

logL(θ|wt) (12)

s.t. taking T to infinity provides a limit function of the form ℓ(θ) = E[logL(θ|wt)] independent of
t. This approach is generally not applicable in our case with unobserved components w̃t = wt,τ̃t

of the stochastic process wt: Integrating these out leads to the functional form (7) and hence an

integral “around” the product of individual likelihood contributions of wt,τt . Due to the nature

of serial correlation of {Xt}, the product cannot be pulled out of the integral and hence taking

the logarithm of LTg does not yield the sum form (12).

We utilize the occasional complete observations of the underlying state variable Wt̄ = wt̄ to

make this approach feasible again. Occasional complete observations interrupt the progression

of the unobserved series and “reset” it to start from an observed value. This allows us to

separate the integral over the entire (asymptotically infinite) time series into smaller integrals

over finite periods which are separated at complete observation times t̄. We formalize the notion

of occasional complete observations in the following assumption:

Assumption A1. (Occasional complete observations)

Assume that there is a number T̄ > 0 s.t. for all t ≥ 1 there exists an integer s ∈ {0, ..., T̄} with

τt+s = τ (or analogously τ̃t+s = ∅).

Practically speaking, this means that the stochastic variable wt is completely observed at

least every T̄ periods. It disallows intervals on non-observations of arbitrary length and disallows

that components of wt are never observed. We illustrate the consequences of the existence of

such periods for the example τ1 = τt̄ = τT = τ : This implies the state Wt̄ = wt̄ is completely

observed and the integral over w̃t̄ is formally undefined as S̃t̄ = ∅. Abusing notation we let∫
∅ h(v)dw = h(v) so that (7) is a valid expression even when including the case of a completely

observed wt̄. Thus, the complete observation cancels integration w.r.t. dw̃t̄ and allows us to

split up the integral at wt̄ into two integrals:

L
(
θ
∣∣ {wt,τt}Tt=1

)
=

∫
×t̄−1

t=2S̃t

t̄∏
t=2

gt (w̃t, w̃t−1, θ) dw̃t̄−1 · · · dw̃1 ·
∫
×T−1

t̄+1
S̃t

T∏
t=t̄+1

gt (w̃t, w̃t−1, θ) dw̃T−1 · · · dw̃t̄+1

= L (θ | w1, w2,τ2 , ..., wt̄)L
(
θ | wt̄, wt̄+1,τt̄+1

, ..., wT

)
. (13)
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We exploit this decomposition at complete observation points in the proof of Theorem 1. We

further require two standard assumptions for inference with time series data.

Assumption A2. The stochastic process {Wt}t∈N is said to be stationary ergodic if the follow-

ing conditions hold:

� Stationarity: For any s, k, t1, ..., tk ∈ N0 it holds that

Pθ0(Wt1 , ...,Wtk) = Pθ0(Wt1+s, ...,Wtk+s) .

� Ergodicity: For any two bounded functions f : Rk+1→R, g : Rℓ+1→R, and k, l, i ∈ N
the process {Wt}t∈N satisfies

lim
n→∞

∣∣∣E [f(Wi, . . . ,Wi+k)g(Wi+n, . . . ,Wi+n+ℓ)]−

E [f(Wi, . . . ,Wi+k)]E [g(Wi+n, . . . ,Wi+n+ℓ)]
∣∣∣ = 0 .

Theorem 1. Let {wt,τt}Tt=1 be (partial) observations of a Markov process {Wt}Tt=1 as defined in

Section A.1 and suppose Assumptions A1 and A2 hold. Then, there exists a function ℓ(θ; τ̂s∗)

s.t. the loglikelihood ℓT (θ) ≡ logLTg (θ) with LTg (θ) as defined in (7) satisfies a law of large

numbers,

plimT →∞

∣∣∣ 1
T
ℓT (θ)− ℓ(θ; τ̂s∗)

∣∣∣ = 0 .

Proof. See Appendix A.2.

3.2 Consistency and asymptotic normality of the exact estimator

Theorem 1 shows that under Assumptions A1 and A2 we can find a limit function to which the

loglikelihood ℓT converges in probability. This provides easy to verify conditions for the validity

of assumption (iv) in Lemma 1. Together with the previous discussion of assumptions (i)-(iii),

we summarize our findings in the following theorem.

Theorem 2. Suppose Assumptions A1 and A2 hold and let ℓ(θ; τ̂s∗) be defined as in Theorem 1.

Furthermore assume that

(i) ℓ(θ; τ̂s∗) is uniquely maximized at θ0 ∈ Θ,

(ii) the parameter space Θ ⊆ Rp is compact, and

(iii) the functions gt defined in (14) are continuous in θ ∈ Θ.

Then, the maximum likelihood estimator

θ̂T = argmax
θ∈Θ

LTg (θ)

is consistent.
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Proof. See Appendix A.2.

We continue with proving asymptotic normality of θ̂T in a similar fashion by analyzing

assumptions (i)-(vi) of Lemma 2: Assumption (i) repeats the conditions of Lemma 1 and is

thus covered by the reasoning in the previous section. Similarly, (ii) is a direct result of choices

regarding the estimation process and (iii) can be reduced to twice continuous differentiability of

gt w.r.t. θ. Assumptions (v) and (vi) follow from the existence of H(θ) ≡ ∇θθℓ(θ; τ̂s∗)(θ) and the

assumption that θ0 uniquely maximizes ℓ(θ; τ̂s∗). Both of these statements follow from according

modeling choices and from sufficient regularity of gt. Convergence of ℓT (θ) to ∇θθℓ(θ; τ̂s∗)(θ) is

achieved by a law of large numbers that follows from assumptions A1 and A2 in the same way

as Theorem 1. Finally, assumption (iv) requires us to verify that the score function ∇θL
T
g (θ)

satisfies a central limit theorem. Wooldridge (1994) states that the score {∇θℓ(θw̄t̄∗l ,τ̂s∗ )}l∈N is

a martingale difference sequence if the underlying time series Wtt∈N is dynamically complete in

distribution. This is true in our case as {Wt}t∈N denotes a Markov chain. Furthermore, for

martingale difference sequences central limit theorems exist which satisfy assumption (iv) in

Lemma 2. For a more detailed discussion of time series maximum likelihood and corresponding

central limit theorems we refer to Wooldridge (1994). We summarize the above in the following

theorem.

Theorem 3. Suppose assumptions A1 and A2 hold and let ℓ(θ; τ̂s∗) be defined as in Theorem 1.

Furthermore, assume the assumptions of Theorem 2 are fulfilled and that

(i) θ0 ∈ Θ̊,

(ii) gt ∈ C2(N ) for a neighborhood N of θ0 for all t ∈ N,

(iii) H(θ) ≡ ∇θθℓ(θ; τ̂s∗)(θ) exists and is non-singular.

Then, the maximum likelihood estimator θ̂T is asymptotically normal.

4 Large sample properties of the approximated maximum like-

lihood estimator with occasional observation

In the previous section, we have established that the exact maximum likelihood estimator is

consistent and asymptotically normal. However, as the likelihood usually does not permit a

closed-form solution it needs to be approximated, e.g., by the RLI method proposed in Gilch

et al. (2024). The maximum likelihood estimator based on the approximate likelihood will

differ from the exact likelihood estimator and hence, we must prove both large sample prop-

erties separately for the approximate estimator. To this end, we show that as the accuracy

of the likelihood approximation improves, the approximate estimator converges to the exact

one under weak regularity conditions. We provide rates for this improvement, ensuring that

the approximate estimator inherits both consistency and asymptotic normality from the exact

estimator.
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4.1 Convergence properties of the RLI approximator

We begin by outlining the approximation properties of the generalized RLI approximation as

introduced in Section 2.2.9 Since, to the best of our knowledge, the RLI method is the only

computationally feasible alternative to non-deterministic simulation methods, this is necessary

to validate the applicability of our proof strategy in the subsequent section.

We use the following compact formulation of the recursive approximation scheme from Sec-

tion 2.2,

ḡt(w̃t, w̃t−1, θ) ≡ gt(w̃t, w̃t−1, θ) It
(
Ît (ḡt+1 (·, w̃t, θ))

)
(14)

for t = 1, ..., T − 1 and ḡT ≡ gT , which includes all special cases regarding full observations

(τt = τ and/or τt−1 = τ) implicitly. The approximated unconditional likelihood L̂TNg of θ given

the observations {wt,τt}Tt=1 is then given by

L̂TNg (θ) ≡ Î1 (ḡ1(·, θ)) . (15)

The additional superscript N denotes the set N = {n1, ..., nT } and indicates the approxi-

mation levels chosen for the interpolation steps It and the quadrature steps Ît: Most economic

models yield functional forms with sufficient regularity to assume the applicability of approxi-

mation rules with polynomial convergence rates, i.e., if the approximation uses n nodes, than

the approximation error is of order O(n−r) for some r ≥ 1. Note that this notation even includes

Monte Carlo simulation by setting r = 1
2 . Therefore, w.l.o.g. we choose interpolation methods

It, which use nIt interpolation nodes and have some polynomial convergence rate Ogt
(
n−rItIt

)
,

and quadrature rules Ît, which use nQt quadrature nodes and have some polynomial convergence

rate Ogt

(
n
−rQt

Qt

)
.

For a given t the convergence properties of interpolation and quadrature may differ, i.e. rIt ̸=
rQt, generating approximation errors of different magnitude if the same number of nodes (nQt =

nIt) were chosen for both methods. In these cases, the computational effort of approximation

can be reduced by reducing the number of nodes used for the method, which converges quicker,

i.e., for which the corresponding rate r·t is larger. Similar to Reich (2018), we implement this

idea by choosing balancing parameters ψt s.t. nIt = nψt
t and nQt = n1−ψt

t .

Given the respective rates rIt, rQt, the choices ψt =
rIt

rIt+rQt
are optimal and yield the conver-

gence rate Ogt(n
−rt
t ) with rt =

rItrQt

rIt+rQt
. This definition is independent of the actual integration

and interpolation dimension |τ̃t| and the according choices of It and Ît as only the asymp-

totic convergence rates, given by r·t, enter in the total approximation error. The notation Ogt

indicates that the implied constant in the Landau notation is dependent on the integrand ḡt.

Approximation errors also accumulate over t. Therefore, it is optimal to choose nt s.t.

n−rtt = n
−rt′
t′ for all t ̸= t′. This can be achieved by considering the smallest rt (over t = 1, ..., T )

and some series
{
n
(k)
t

}
k∈N

with n
(k)
t →∞ for k→∞ and setting n

(k)
t′ =

(
n
(k)
t

)rt/rt′
. We denote

the common convergence rate across t = 1, ..., T by O(n−r) = OT̄,g(n
−r) with the constant

depending on gt and a maximal length T̄ of the integrated time series, i.e. T ≤ T̄ . Although we

9See Gilch et al. (2024) for a detailed treatment of the RLI estimator under occasional state observations.

15



will later take T to infinity, this condition is not problematic for us as it is fulfilled naturally

by assumption A1. Finally, given at least r-times continuous differentiability and boundedness

of all gt and the appropriate choice of quadrature and interpolation methods, Proposition 2 of

Reich (2018) shows the convergence rate∣∣∣L̂TNg (θ)− LTg (θ)
∣∣∣ = O(Tn−r) (16)

which is also applicable to our setup and the respective definition of L̂TNg examined in this

paper.

4.2 Consistency and asymptotic normality of the approximate estimator

We conclude by providing two theorems that transfer the results on large sample properties

of θ̂T to the approximate estimator θ̃TN . We base our proof on a similar approach described

in Griebel et al. (2019) and cite their results as Lemma 3 and Lemma 4 in the appendix by

providing easy to verify conditions under which these lemmas hold.

Theorem 4. Let LTg and L̂TNg be defined as above. Assume that ℓT (θ; τ̂s∗) is defined as in

Theorem 1 and all assumptions of Theorem 2 are fulfilled. Assume further that∣∣∣L̂TNg (θ)− LTg (θ)
∣∣∣ = O(Tn−r)

and that there exists δ > 0 s.t. Pθ(w̄t̄∗l ,τ̂s∗ ) ≥ δ for all θ ∈ Θ, w̄t̄∗l ,τ̂s∗ ∈ St̄∗l × · · · × St̄∗l+1
.

Then the estimator θ̃TN is consistent.

Proof. See Appendix A.2.

Note that the assumption of lower boundedness for Pθ(w̄t̄∗l ,τ̂s∗ ) is practically equivalent to

compact support for the (occasionally) observed variables wt,τt . This is a usual assumption in

related simulation methods and also a frequent precondition for proving large sample properties

in the HMM literature, where the state xt is never observed. In particular, this makes the

results in this section hold independently of the results in the previous section as we do not

require occasional observations for the approximated likelihood but can rely on existing results

for the exact estimator (see discussion in the introduction).

We complete this section with the proof of asymptotic normality of θ̃TN . For this purpose,

we need to provide an intuition for the Jacobian ∇θL̂
TN
g and the Hessian ∇θθL̂

TN
g of the

approximated likelihood and their convergence to ∇θL
T
g and ∇θθL

T
g respectively. The gradient

of LTg is given by

∇θL
T
g (θ) =

∫
∇θ

(
T∏
t=1

gt(w̃t, w̃t−1, θ)

)
w̃T · · · dw̃1

=

T∑
t=1

∫ ( T∏
s=1

gs(w̃s, w̃s−1, θ)

)
∇θgt(w̃t, w̃t−1, θ)

gt(w̃t, w̃t−1, θ)
w̃T · · · dw̃1

= LT∇θg
(θ) . (17)
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Having set gt ≥ 0, interchanging integration and differentiation is allowed if the gt are integrable

in w̃t, w̃t−1 for all θ and the gradients ∇θgt exist for all w̃t, w̃t−1 a.s. We define the likelihood

gradient contributions

LTg,∇gt(θ) =

∫ ∏
s ̸=t

gs(w̃s, w̃s−1, θ)

∇θgt(w̃t, w̃t−1, θ)dw̃T · · · dw̃1 (18)

such that ∇θL
T
g is given by

∇θL
T
g (θ) =

T∑
t=1

LTg,∇gt(θ) .

Note that LTg,∇gt is a function with image in Rp but all its components have the same structure

as (8) just replacing gs with ∇θgs for s = t and otherwise leaving it the same. Now, the RLI

approximation scheme can be applied separately to each LTg,∇gt(θ) (considering each component

of the p-dimensional function separately). Under similar assumptions on the partial derivatives
∂
∂θi
gt for i = 1, ..., p and t = 1, ..., T as on gt, Proposition 2 of Reich (2018) holds for the

approximated gradient L̂TNg,∇gt(θ) with the same convergence rates. As mentioned in the paper, it

is not necessary to bound gt to below 1, but any finite bound suffices for the proof of Proposition

2. Hence, we also need to assume boundedness of ∇θgt in order to establish convergence to

LTg,∇gt . Summing up L̂TNg,∇gt(θ) over t provides the approximator

L̂TN∇θg
(θ) =

T∑
t=1

L̂TNg,∇gt(θ)

for ∇θL
T
g (θ) which converges with rate (16) multiplied by T :∣∣∣L̂TN∇θg

(θ)−∇θL
T
g (θ)

∣∣∣ = O
(
T 2n−r

)
.

Finally, we need to relate L̂TN∇θg
to the Jacobian ∇θL̂

TN
g . The RLI scheme uses a combination

of interpolation and quadrature methods. Quadrature methods Î are linear in their argument

(which is the integrand) by construction, hence ∇θ Î(f(·, θ)) = Î(∇θf(·, θ)) for some function

f(·, θ). The same holds for standard interpolation methods like Chebychev and Spline interpo-

lation which usually solve a linear system of equation in evaluations of the interpolated function

to obtain interpolation weights. Together this implies L̂TN∇θg
= ∇θL̂

TN
g . A similar approximation

L̂TN∇θθg
= ∇θθL̂

TN
g may be derived for ∇θθL

T
g to obtain the convergence rate O(T 3n−r). We can

now state asymptotic normality for θ̃TN :

Theorem 5. Let LTg , L̂
TN
g , and ℓT (θ; τ̂s∗) be defined as above. Suppose that all assumptions of
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Theorem 3 are fulfilled. Furthermore, assume that∣∣∣L̂TNg (θ)− LTg (θ)
∣∣∣ = O(Tn−r) ,∣∣∣L̂TN∇θg

(θ)−∇θL
T
g (θ)

∣∣∣ = O
(
T 2n−r

)
,∣∣∣L̂TN∇θθg

(θ)−∇θθL
T
g (θ)

∣∣∣ = O
(
T 3n−r

)
,

and that ḡt is twice continuously differentiable in θ ∈ Θ for all t ∈ N. Then, θ̃TN is asymptoti-

cally normal.

Proof. See Appendix A.2.

The next corollary generalizes our results for non-compact state spaces.

Corollary 1. To do.
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A Appendix

A.1 Asymptotics for extremum and approximate estimators

We build our analysis on the standard presentation of results for large sample properties of

extremum estimators by Newey and McFadden (1994) for the first stage. For the second stage,

Griebel et al. (2019) provide a general framework for analysis of approximate estimators. In

both papers Qk(θ) denotes an objective function utilizing k data points which is maximized

over some parameter space Θ by the extremum estimator θ̂k. This corresponds to the exact

likelihood LT and the exact likelihood estimator θ̂T . If Qk(θ) cannot be computed analytically,

it is approximated by Q̂kn(θ) using an approximation method with n nodes and the approximate

estimator θ̂kn is its maximizer. This corresponds to the approximated likelihood L̃TN and the

approximate likelihood estimator θ̃TN .

For reference, we cite Theorems 2.1 and 3.1 from Newey and McFadden (1994) for asymp-

totics of the exact estimator:

Lemma 1. Assume that there is a function Q(θ) such that

(i) Q(θ) is uniquely maximized at θ0,

(ii) the parameter space Θ is compact,

(iii) Q(θ) is continuous,

(iv) the function Qk(θ) converges uniformly in probability to Q(θ).

Then, θ̂k is a consistent estimator of θ0, i.e. plimk→∞ θ̂k = θ0.

Lemma 2. Suppose that there exists a function Q(θ) s.t.

(i) the assumptions of Lemma 1 hold,

(ii) θ0 ∈ Θ̊,

(iii) Qk(θ) ∈ C2(N ) for a neighborhood N of θ0,

(iv)
√
k∇θQk(θ0)

d→ N(0,Σ),

(v) there exists a function H(θ) which is continuous at θ0 s.t.

sup
θ∈N

||∇θθQk(θ)−H(θ)|| p→ 0,

(vi) H ≡ H(θ0) is non-singular.

Then θ̂k is asymptotically normal, i.e.
√
k(θ̂k − θ0)

d→ N(0, H−1ΣH−1).

For the approximate estimator, we continue by citing Theorem 2 and 4 from Griebel et al.

(2019):

Lemma 3. Assume that there exists a function Q(θ) such that
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(i) the assumptions of Lemma 1 are fulfilled, and

(ii) Q̂kn(θ) converges uniformly in probability to Qk(θ), i.e.

plimk→∞ sup
θ∈Θ

∣∣∣Q̂kn(θ)−Qk(θ)
∣∣∣ = 0 .

Then, θ̂kn is a consistent estimator of θ0, i.e. plimk→∞ θ̂kn = θ0.

Lemma 4. Assume that there exists a function Q(θ) s.t.

(i) the assumptions of Lemma 2 are fulfilled,

(ii) condition (ii) of Lemma 3 holds,

(iii) Q̂kn(θ) ∈ C2(N ) almost surely,

(iv) plimk→∞
√
k supθ∈Θ ||∇θQ̂kn(θ)−∇θQk(θ)|| = 0,

(v) plimk→∞ supθ∈Θ ||∇θθQ̂kn(θ)−∇θθQk(θ)|| = 0.

Then θ̂kn is asymptotically normal with the same limit distribution as θ̂k.

A.2 Proofs for Sections 3 and 4

This section contains the proofs for Theorems 1–5.

A.2.1 Proof of Theorem 1

Proof. Step 1: We redefine the set T̄ ≡ {t ∈ T | τt = τ} to be the subset of periods in which

wt is completely observed and let S ≥ 1 s.t. S+1 = |T̄ | (note that 1 ∈ T̄ is always assumed).10

By Assumption A1, at least every T̄ -th period features a completely observed wt hence S ≥ T
T̄
.

We number the periods of complete observation in an ascending order, 1 = t̄0 < t̄1 < ... < t̄S

and assume w.l.o.g. that the last period T also features a completely observed wT , i.e. t̄S = T .

Finally, the interval lengths are given by sk ≡ t̄k − t̄k−1 for k = 1, ..., S such that by definition∑S
k=1 sk = T and by A1 sk ≤ T̄ for all k.

Step 2: Take the logarithm of LTg to obtain the loglikelihood ℓT = logLTg . Using (8) and

10This is consistent with our previous definition of T̄ which had dx = 1 and thus any observation was equivalent
to a complete observation.
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the same argument as for (13) we get the decomposition into likelihood contributions,

ℓT (θ) = ℓ
(
θ
∣∣ {wt,τt}Tt=1

)
= logL

(
θ
∣∣ {wt,τt}Tt=1

)
= log

∫
×T

t=1S̃t

T∏
t=1

gt(w̃t, w̃t−1, θ)dw̃T · · · dw̃1

= log
S−1∏
k=0

∫
×

t̄k+1−1

t=t̄k+1
S̃t

t̄k+1∏
t=t̄k+1

gt(w̃t, w̃t−1, θ)dw̃t̄k+1−1 · · · dw̃t̄k+1

=
S−1∑
k=0

ℓ
(
θ
∣∣ {wt,τt}t̄k+1

t=t̄k

)
. (19)

Each likelihood contribution utilizes the set of observations {wt,τt}
t̄k+1

t=t̄k
s.t. all such sets only

overlap at the complete observations wt̄k,τt̄k
, wt̄k+1,τt̄k+1

.

Step 3: From S ≥ T
T̄

it follows that S→∞ if T →∞. Together with sk ≤ T̄ this implies

that there exists s∗ s.t. sk = s∗ for infinitely many k. We assumed that S is of fixed dimension

d < ∞, hence for every interval of length s∗ there are up to (s∗ − 1)d single variables wti,

t = t̄k + 1, ..., t̄k + s∗ − 1 that may or may not be observed by the econometrician. As for the

existence of s∗ it is easy to see that there is at least one set τ̂s∗ = {(s, i) | 1 ≤ s ≤ s∗ − 1, 1 ≤
i ≤ d, } s.t. given S→∞ for infinitely many t̄k the variable wt̄k+s,i is observed if and only if

(s, i) ∈ τ̂s∗ . In other words, we first claim that among all possible lengths of intervals sk ≤ S

there is at least one, denoted by s∗, that must occur infinitely many times if T tends to infinity.

Secondly, there are only finitely many patterns of occasional observations of wti in each of these

intervals of length s∗, so for T →∞ (i.e. S→∞) at least one of these patterns (characterized

by τ̂s∗) must realize infinitely many times. We can now define the subset

T̄ ∗ ≡
{
t̄∗ ∈ T̄ | t̄∗ + s ∈ T̄ , xt̄∗+s,i observed iff. (s, i) ∈ τ̂s∗

}
⊆ T̄ ⊆ T

and number its elements in ascending order t̄∗1 < t̄∗2 < ... < t̄∗S∗ . In particular, S∗ = |T̄ ∗|. This

yields the homogenous loglikelihood function

ℓT (θ; τ̂s∗) =
S∗∑
l=1

ℓ
(
θ
∣∣∣{wt,τt}t̄∗l+1

t=t̄∗l

)
. (20)

Step 4: ℓT (θ; τ̂s∗) is homogenous in the sense that all likelihood contributions contain

information on exactly the same variables and therefore have the exact same structure regarding

the conditional probabilities Pθ. We define a compact notation

w̄t̄∗l ,τ̂s∗ ≡ {wt,τt}
t̄∗l+1

t=t̄∗l
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for the sets of observations between complete observations t̄∗l and t̄∗l+1 and rewrite (20) as

ℓT (θ; τ̂s∗) =
S∗∑
l=1

logPθ(w̄t̄∗l ,τ̂s∗ ) .

By Assumption A2, the time series {w̄t̄∗l ,τ̂s∗}l∈N is also stationary and ergodic and hence by the

Ergodic theorem the likelihood ℓT (θ; τ̂s∗) fulfills a weak law of large numbers

plimS∗ →∞

∣∣∣∣∣ 1S∗ ℓ
T (θ; τ̂s∗)− E

[
logPθ(w̄t̄∗l ,τ̂s∗ )

] ∣∣∣∣∣ = 0 .

Step 5: If s∗ and τ̂s∗ are unique, then all other interval lengths s ≤ T̄ and observation pat-

terns τ̂s for intervals of length s only appear finitely many times. This implies ℓT (θ)→ ℓT (θ; τ̂s∗)

and S∗

T → 1 as T →∞ and hence 1
T ℓ

T also converges to

ℓ(θ; τ̂s∗) ≡ E
[
logPθ(w̄t̄∗l ,τ̂s∗ )

]
(21)

in probability where ℓ(θ; τ̂s∗) is independent of l by Assumption A2. This result can be extended

to the case with multiple τ̂s∗ (with possibly different s∗) by determining the relative frequencies

ατ̂s∗ of the individual τ̂s∗ w.r.t. each other. Then, the limit function is the weighted mean

ℓ(θ; τ̂s∗) ≡
∑
τ̂s∗

ατ̂s∗ E
[
logPθ(w̄t̄∗l ,τ̂s∗ )

]

with
∑

τ̂s∗
ατ̂s∗ = 1. Both sums are finite as there are at most

∑
s∗≤T̄ 2d(s

∗−1) possible different

observation patterns under Assumption A1.

A.2.2 Proof of Theorem 2

Proof. We have defined ℓT as logarithm of LTg , hence L
T
g = exp ℓT . Theorem 1 gives us a law

of large numbers for 1
T ℓ

T which yields the following law of large numbers for LTg

plimT →∞

∣∣∣LTg (θ) 1
T − exp (ℓ(θ; τ̂s∗))

∣∣∣ = 0

due to continuity of exp. Monotonicity of exp implies that LTg is also uniquely maximized by

θ0. Put together, and considering the discussion of Assumptions (i)-(iii) of Lemma 1 at the

beginning of Section 3, consistency of θ̂T follows directly from Lemma 1 and Theorem 1.

A.2.3 Proof of Theorem 4

Proof. We show consistency by proving that the Assumptions (i) and (ii) in Lemma 3 hold for

Qk and Q̂kn. Assumption (i) was already discussed in Section 3, hence it remains to show (ii).

Instead of using LTg we use ℓT for this purpose and define its approximator

ℓ̂TN (θ) = log L̂TNg (θ) =

S−1∑
k=0

log L̂skNg (θ)
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with S and sk as in the proof of Theorem 1 and L̂skNg (θ) being the RLI approximator of

ℓ
(
θ
∣∣ {wt,τt}t̄k+1

t=t̄k

)
from equation (19). Focusing on the case with unique s∗ and τ̂s∗ , we get that

sk = s∗ and {wt,τt}
t̄k+1

t=t̄k
= w̄t̄∗l ,τ̂s∗ almost always and hence asymptotically

ℓ̂TN (θ)→T ℓ̂TN (θ; τ̂s∗) =

S∗∑
l=1

log L̂s
∗N
g (θ|w̄t̄∗l ,τ̂s∗ ) .

Here L̂s
∗N
g (θ|w̄t̄∗l ,τ̂s∗ ) is the approximation of Pθ(w̄t̄∗l ,τ̂s∗ ). We can now follow the proof of Theo-

rem 7 in Griebel et al. (2019) to show

lim
T →∞

P

(
sup
θ∈Θ

∣∣∣∣ 1T ℓ̂TN (θ)− 1

T
ℓT (θ)

∣∣∣∣ > ε

)
= 0 .

We can use the lower bound on Pθ(w̄t̄∗l ,τ̂s∗ ) to apply a mean value theorem and obtain

sup
θ∈Θ

∣∣∣∣ 1T ℓ̂TN (θ)− 1

T
ℓT (θ)

∣∣∣∣ ≤ sup
θ∈Θ

sup
w̄t̄∗

l
,τ̂s∗

1

δ

∣∣∣L̂s∗Ng (θ|w̄t̄∗l ,τ̂s∗ )− Pθ(w̄t̄∗l ,τ̂s∗ )
∣∣∣

≤ O(s∗n−r) (22)

with the convergence rate from (16). The supremum over θ is gained from compactness of Θ

and continuity of gt in θ. Note that any increasing function n = n(T ) is sufficient to let the term

(22) decrease to 0 as T →∞. This proves Assumption (iii) of Lemma 3 and hence consistency

of θ̃TN (as maximizer of ℓ̂TN and thus also of L̂TNg ).

A.2.4 Proof of Theorem 5

Proof. We show asymptotic normality by proving Assumptions (i)-(v) of Lemma 4: Both (i)

and (ii) are given by assumption and are discussed in the proofs of Theorems 3 and 4. Twice

differentiability of L̂TNg follows from twice differentiability of ḡt. This is an innocuous assumption

as most economic models (and thus the resulting likelihood functions) feature smooth functions.

Additionally, standard interpolation functions also require and return at least twice continuously

differentiable inputs and outputs respectively in order to achieve polynomial convergence rates

which we require anyway.

Assumptions (iv) and (v) follow from the convergence rates of L̂TN∇θg
and L̂TN∇θθg

: We plug

these into the respective conditions (iv) and (v) and obtain the requirements O(T 2.5n−r)→ 0

and O(T 3n−r)→ 0 for T →∞. Practically, the longer sample is associated with more summands

in the chain rule for the Jacobian and Hessian, as can be seen in Equation (17). Each summand

adds an individual independent error term of order O(Tn−r) or O(T 2n−r), respectively. To

counteract this accumulation of errors, the approximation itself has to improve as T →∞.

However, if the approximation has high polynomial convergence order r, then this can be

achieved by only a moderately fast growing function n = n(T ). In fact, any function n(T )

of at least rate T (3+ε)/r with ε > 0 is sufficient for this purpose.

24


