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Abstract

Economic datasets often suffer from missing observations, with key variables
such as prices, firm expenses, or volatilities being observed only occasionally or not
at all. We provide a novel comprehensive methodology to estimate the missing
observations in time-series data when the occasionally observed variable is modeled
as the (partly or fully) latent state in a nonlinear state-space model. First, we
construct plug-in estimators for the latent state, treating the model parameters as
known. To approximate the necessary integrals efficiently, we develop a recursive
quadrature and interpolation (RQI) algorithm, achieving polynomial convergence
rates for the involved integrals. Second, we incorporate estimation uncertainty
about the model parameters by augmenting the plug-in estimators using a confid-
ence set for the parameters—without assumptions about their prior distribution.
We demonstrate the efficiency of RQI in extensive Monte Carlo studies, bench-
marking it against a popular particle smoothing algorithm, and illustrate the full
methodology by estimating a sequence of endogenously unobserved prices using
data from a steel-trading firm and a dynamic profit-maximization model.
Keywords: state-space models, missing data, predictive inference, recursive like-

lihood integration, smoothing, occasional observations
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1 Introduction

Time series data is often incomplete with some variables being observed only occasionally
or even never. This lack of information makes policy analysis with dynamic economic
models difficult, since the reaction of each variable to a policy change depends on the full
joint trajectory of all variables. Such observability (or missing data) problems arise across
many fields: In marketing or empirical 1O, the price of a product is often only available
in periods when the product is actually purchased (Erdem, Keane and Sun (1999), Hall
and Rust (2021)). To assess how a tax reduction would affect demand for this product,
one must first infer what the actual prices might have been. In finance, the unobserved
variables often include abstract quantities such as the time-varying volatility of asset
returns (Shephard (1997), Kim, Shephard and Chib (1998)), and a common objective is
to compare these volatilities across firms, industries and countries.

Nonlinear, non-Gaussian state-space models are a popular tool for the analysis of
such time series data. They achieve this by specifying structural equations that jointly
describe the evolution of the observed variables and a fully or partly unobserved (latent)
state. While linear-Gaussian models are used traditionally for this purpose because they
are tractable via the Kalman filter and smoother, they impose restrictive linear assump-
tions on the relationship between observed variables, latent states, and shocks. Hence,
across many fields researchers have developed nonlinear state-space models, which rep-
resent economic mechanisms more explicitly.*

Once a state-space model is specified, it is natural to use it to estimate the missing
observations in the data; this task is also referred to as “smoothing” in the state-space
literature. However, this is challenging in two dimensions: computationally, because
plug-in point estimators and prediction bands are costly to compute; existing methods
rely on simulation-based approximations that converge only at the probabilistic Monte
Carlo rate. And methodologically, because inference must account for uncertainty about
the model parameters; existing approaches address it in a Bayesian framework but not
every researcher has access to reliable priors in their particular setting. Furthermore, the
latent state is often not truly latent: in many applications, the data include observations
for some periods—what we call “occasional observations”—while it is missing in others.
Although some existing methods can accommodate occasional observations in mixed-
frequency settings, the systematic treatment of estimation with occasional observations
remains relatively unexplored.

In this paper, we provide a comprehensive framework for the frequentist estimation

of missing observations, addressing both challenges. First, we develop a fast, determin-
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istic algorithm for the approximation of plug-in estimators, providing a more efficient,
deterministic alternative to simulation-based methods. Second, we introduce a prediction
band union to augment the plug-in estimators with uncertainty about the model para-
meters and compute it as the solution to a constrained optimization problem. The two
contributions are complementary: plug-in bands undercover in small samples, which the
uncertainty-aware construction corrects, while the optimization routine repeatedly calls
the plug-in components and is computationally viable only because we can efficiently ap-
proximate these components. We include occasional observations seamlessly in both our
algorithm and our inference concept, making both flexible to use across many possible
applications, with or without occasional observations.

Our first contribution is to develop a recursive quadrature and interpolation (RQI)
algorithm for the numerically efficient computation of point estimators and plug-in pre-
diction bands. Computing the point estimates and prediction sets requires marginal-
izing over the missing observations—that is, evaluating a high-dimensional, generally
intractable integral whose dimension grows with the length of the time span between
observations. The integral arises from the joint conditional distribution of the missing
observations given the data, which includes both the fully observed variables and any
occasional observations of the latent variable. Note that we use a fixed parametrization
of the model to derive the conditional distribution—an assumption that we relax in our
second contribution.

Existing approaches such as particle smoothing draw samples from the joint distribu-
tion and use them both to approximate the integral and to estimate the latent states (see
Chopin and Papaspiliopoulos (2020) for a textbook treatment). These methods face two
limitations: (i) sampling-based integration converges slowly, making accurate approxim-
ation computationally expensive—especially when estimators must be recomputed many
times (e.g., computing volatility paths for a universe of stocks); and (ii) they do not fully
exploit occasional observations of the otherwise unobserved states. For instance, in the
pricing data case, prices are observed when purchases occur and should be used directly
in the estimation process.

Our recursive quadrature and interpolation (RQI) algorithm combines deterministic
quadrature and interpolation rules to approximate a recursive representation of the in-
tegrals efficiently. In doing so, we generalize the recursive likelihood integration (RLI)
algorithm (Reich (2018), Gilch et al. (2025)) to arbitrary integration domains and in-
tegrands. The RQI algorithm decomposes the full integral into a series of nested low-
dimensional integrals and approximates each of these by alternating numerical integration
and interpolation rules. The interpolation step allows us to exploit the fast convergence of
deterministic quadrature and interpolation methods, yielding approximation errors that
decay at a polynomial rate without incurring the curse of dimensionality. Moreover, the

RQI algorithm naturally incorporates occasional observations: whenever a latent state is



observed, the corresponding recursion step collapses to a single density evaluation rather
than an integral.

The literature on estimating the latent state in state-space models has primar-
ily relied on linear approximations of nonlinear models, simulation-based methods, or
deterministic schemes developed for likelihood evaluation rather than for inference on
the latent state itself. Linearizing the model yields closed-form expressions for these
integrals—obtainable via Kalman filtering and smoothing—but can introduce large errors
and often defeats the purpose of a nonlinear specification (Fernandez-Villaverde, Rubio-
Ramirez and Santos, 2006). Simulation-based methods retain the full nonlinear model and
sample missing states from model-implied conditional distributions—e.g., particle filter-
ing/smoothing (Fernandez-Villaverde and Rubio-Ramirez (2007), Herbst and Schorfheide
(2014), Blevins (2015), Chopin and Papaspiliopoulos (2020)), Gibbs sampling (Norets
(2009)) and the GHK simulator (Keane (1994))—to obtain Monte Carlo approximations
of the integrals. However, such approximations achieve only the probabilistic Monte
Carlo error rate, thus there is a trade-off between cheap but rough or computationally
expensive but accurate approximations.

In contrast, deterministic numerical schemes based on efficient quadrature and inter-
polation have been developed to approximate the model likelihood, a high-dimensional
integral with a similar structure (Gilch et al., 2025; Reich, 2018), but not yet to compute
the integrals required for inference on the latent state.? Our RQI algorithm fills this
gap in the literature by providing integral approximations that are both highly accurate
and computationally efficient. Because the approximation is deterministic, it avoids the
randomness of simulation-based methods and therefore eliminates the risk of poor results
due to unfavorable draws.

Our second contribution is to develop a frequentist predictive inference concept that
accounts for two sources of uncertainty about the missing observations: randomness
specified by the model, i.e., in the form of random shocks, and parameter uncertainty
arising from the fact that model parameters must be estimated from the same data. In
particular, we formulate inference exactly for the missing observations, using occasional
observations to directly inform these estimates.

A key methodological challenge in inference for the missing sequence is the need to
incorporate parameter uncertainty arising from the estimation of the structural model.
The structural model is parametrized, and the parameter (vector) 6 is typically estimated
from the same data used to infer the latent path. Naive plug-in inference for the missing
sequence therefore understates total uncertainty since it simply plugs in the parameter

estimate without acknowledging its estimation uncertainty. Bayesian inference addresses
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this issue by imposing distributional assumptions through a prior on the parameters.
Frequentist parametric bootstrap methods resample the data but face typical challenges
when drawing from time series and computing quantiles of high-dimensional objects.

We avoid distributional assumptions and adopt a fully frequentist predictive inference
perspective. Specifically, we define a prediction band union as the union of plug-in bands
over a confidence set for 6, establish a coverage lower bound for this union, and calibrate
it to achieve a target frequentist coverage under parameter uncertainty. Computationally,
we show that the (projected) prediction band union can be obtained by solving a series of
constrained optimization problems that standard solvers handle reliably. Note that this
approach is practical only because in our first contribution we showed that the plug-in
components (point path, variance, and coverage) are computed efficiently with RQI.

The literature deals with estimation uncertainty either by ignoring it, by using
Bayesian methods, or by implementing a parametric bootstrap: When samples are large,
parameter uncertainty may be negligible, which motivates plug-in procedures that condi-
tion on estimated parameters and account only for model-implied randomness (Kitagawa
(1987), Durbin and Koopman (2012)). However, with too little data parameter uncer-
tainty cannot be ignored. Bayesian approaches integrate over a prior on the parameters
(Hamilton (1986), Quenneville and Singh (2000), Durbin (2002)), though the choice of
prior is often debated and some researchers prefer not to impose such distributional
assumptions. In contrast, frequentist predictive inference (Cox (1975) and Barndorff-
Nielsen and Cox (1996), see also Geisser (1993) and Young and Smith (2005) for text-
book treatments) addresses prediction under parameter uncertainty; however, the typical
application for predictive inference is the estimation of future observations given past
data.

Therefore, our second contribution is to formulate predictive inference for missing
observations and provide frequentist prediction bands under parameter uncertainty. To
our knowledge, we are the first to construct such simultaneous prediction bands for gen-
eral nonlinear state-space models that directly satisfy a predictive-inference criterion in
the frequentist sense. Related works by Pfeffermann and Tiller (2005) and Rodriguez
and Ruiz (2012) use bootstrap methods to compute per-period prediction mean squared
errors, but do not deliver (simultaneous) prediction bands for the entire missing sequence
and are limited to linear-Gaussian models.

We demonstrate numerical efficiency of the RQI algorithm and verify that our predic-
tion bands attain their nominal coverage in simulation studies, and show their feasibility
in an actual application using real data from a steel-trading firm (Hall and Rust, 2021).

First, we carry out simulation exercises to verify the theoretical error convergence
rates using a standard stochastic volatility model with simulated data. For this purpose
we compute the relative approximation error of the respective integrals as a function of the

total number of function evaluations, N;,,. We show that the relative approximation



error of the mean integral decays with a polynomial rate, O(Nt_ofal)7 when using the
RQI algorithm with cubic splines and Gaussian quadrature, compared to the standard
probabilistic Monte Carlo rate, Op(N;tlcflz), when using a forward-filtering/backward-
smoothing particle smoother. The same holds true for the coverage integral and the scale
of the plug-in prediction band.

Second, we demonstrate that our proposed prediction band union satisfies the pre-
dictive coverage criterion. Simulating data from a linear-Gaussian model, we find that
for a target coverage of 95% the prediction band union covers the true sequence in 99% of
all simulations, i.e., overcovers, whereas the plug-in prediction band ignoring parameter
uncertainty undercovers, covering in only 85% of all simulations.

Third, we prove applicability of our method in a real-world application, analyzing
data from a steel-trading firm that buys on the wholesale market and resells on the retail
market. The dataset contains only occasional observations of the wholesale price py,
specifically in periods when the firm restocks. Using the dynamic profit-maximization
model presented in Hall and Rust (2021), and applying the methods developed in this
paper, we estimate the wholesale price sequence in non-observed periods. We report the
mean path and the projected prediction band union, thereby delivering full predictive
inference for p, under both model-induced randomness and parameter uncertainty.

The remainder of this paper is organized as follows: Section 2 introduces the formal
setup and states the problem; in particular, Section 2.4 introduces the concepts from
predictive inference that are fundamental to our method. Section 3 states our contribu-
tions: Section 3.1 develops the recursive quadrature and interpolation (RQI) algorithm
for plug-in point estimators and prediction bands and reports its convergence rates in
simulation experiments. Section 3.2 defines the prediction band union, derives a lower
bound on its coverage and demonstrates its empirical coverage in simulation experiments.
Section 4 reports the results from an application of our method to the steel trading model
of HR. Section 5 concludes.

2 Framework

This section lays out the setting on which our contribution builds. Section 2.1 form-
ally defines the state-space model that encodes the economic environment; Section 2.2
then discusses data availability and formalizes occasional observations. Next, Section 2.3
details maximum-likelihood estimation via RLI, providing the foundation for the compu-
tational methods we develop in Section 3.1. Finally, Section 2.4 presents our framework
for inference on the missing sequence, specifying the objects computed in Sections 3.1

and 3.2.



2.1 State-Space Models

In this paper, we consider a discrete-time stochastic process {Y;, X;}, with measurement
variable y; and state variable x; following a parametric Markov transition density PQX 28
This density may not be available in closed form but rather it is induced by a structural
economic model.

The transition density of the state variables, PéX 28 typically arises from a functional

relation between z; and ¥, in our case motivated by a formal economic model:

iid.

Y = \Ife(xt,nt) e ~ Pg (1)
iid. e
Ty = @9(1}_1,5,5) Er P9 (2)

where 7; and &; are random errors or shocks. Their distributions Pg, P; and the functions
Wy, &y are known up to a finite-dimensional parameter vector # € ©. They imply domains
S; C R™ and S, C R% for the variables z; and y; respectively. Together, the model
equations and the distributions of the random errors induce a probability law for the
transition from (y;_1,2;_1) to (y;, z¢) satisfying a Markov property. We further assume

that this law admits a transition density PéX Y which therefore factorizes as

P (g il g1, wm1) = By Y (ile) By (we]wes) (3)

i.e., the always observed variable 1, depends on the past only through its dependence on
the state x;, and the series {x;} itself also satisfies a Markov property.

Both y; and z; may be vectors, so Wy and ®y are, in general, multivariate functions.
However, our analysis focuses on the case of one-dimensional z; (d, = 1): This is because
we are interested in estimating x; for all ¢, and then visualizing those estimates, which
ultimately amounts to reporting each component of x; separately. In practice, this means
we must marginalize all other components of x; not under consideration anyway. For the
sake of the argument, it is therefore convenient to write the model and all associated
densities in terms of the one-dimensional x; of interest; however, the theory extends
naturally to the multivariate case.

Crucially, we allow for nonlinear functions and non-Gaussian densities. “Nonlinear”
may include cases where the functions are defined implicitly as the solution to a (per-
period) optimization problem. A large literature addresses how to solve such problems, so
we assume that these state-dependent solutions—and hence the functions ®y and ¥y—are

either available in closed form or can be approximated to high accuracy.



2.2 Missing Data

In many state-space models, y; is treated as the measurement variable which is always
observed by the researcher, whereas z; is latent. In this paper, we consider a more
general setting in which the researcher observes the full measurement series {y;}., but,
in addition, may observe z; for some periods ¢t € T C {0,...,T}; note that this includes
the case of no observations, i.e., 7 = (). The observation process itself may depend on
the model variables. However, not accounting for such endogeneity can bias inference
based on the combined data {{z;},c7, {y:}1_o}. Therefore, the structural model must
impose assumptions on either exogeneity of the observation process or a functional form
governing its endogeneity.

We can formalize the endogeneity of occasional observations using a missingness
indicator m; € {0,1} that records whether z; is present in the dataset: m; = 0 if t € T
and m; = 1 otherwise. The indicator m, is observed in every period, thus, the full data
set is {{z: }rer, {ve,mi )y}, We assume the joint process (yi,z:, m;) is Markov. For
simplicity, m; depends only on current (y;, ;). Because missingness is a researcher-side
issue, all agents observe the full data, implying

M,X)Y

g (mta T, yt|mt—17 Yt—1, wt—l) = pé\fn (mt|xta yt)PG)(VY(

Y Telyr—1, Te-1), (4)
i.e., m; doesn’t affect the economic variables z;,y;, and Péw TS parametrized by 6 =
(O, 0), where 60, parametrizes pé‘fn and 6 is the model parameter (vector) as before.

The missingness mechanism pé\fn (my|x¢, y;) formalizes when and with what probab-
ility the researcher observes x;. Its key feature is whether it depends on x;: if it does
not, we call the mechanism exogenous and the data missing-at-random (MAR), because
observation does not depend on the realized value;® if it does depend on x;, we call
po! (myly, x) endogenous and the data not-missing-at-random (NMAR).*

For notational simplicity, we adopt two conventions for the remainder of the paper:
First, we set 7 = 0, i.e., x; is never observed, and we estimate the missing sequence
{x;}L, given the data {y;}/_,. In the case with occasional observations, all derivations
carry over verbatim by estimating {z;},c7 given {{z:}e7, {v:}_y}; this does not alter
the formal arguments, and our computational methods are designed to accommodate
occasional observations. Second, we treat the data as MAR. All results extend to NMAR

3 A prominent example for MAR data is mixed-frequency data, where time series are observed peri-
odically but at different frequencies. This is common in macroeconomic applications with monthly,
quarterly, or annual series, or with series aggregated over several periods and then reported at a lower
frequency. For instance, the high-frequency series y;Z_, might be monthly, while z;._, is recorded annu-
ally. Then the observation set is 7 = 0,12,24, ..., T, entirely independent of the values taken by z;_
because the mechanism depends only on ¢ and is therefore exogenous.

4 An example of NMAR data involves prices: in scanner data, prices are often observed only when the
corresponding product is purchased Erdem, Keane and Sun (1999). Because purchase decisions depend
directly on price, price observation is endogenous. A similar setting with wholesale steel prices is studied
in Hall and Rust (2021) and motivates our analysis in Section 4.
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settings by including m, as an additional observed variable and treating (my,y;) as the
full set of observations. In both cases, see Gilch et al. (2025) for details on modeling the
missing mechanism for latent states in state-space models.

Under non-observation of z; in some or all periods, allowing nonlinearity and /or non-
Gaussianity in the economics creates two challenges: First, key objects of interest—such
as the likelihood—typically lack closed-form expressions. We show how to approximate
these objects using recursive likelihood integration (RLI): in Section 2.3 for the likelihood
itself, and in Section 3 for inference over {z;}Z,. Second, the densities P and P, ™ often
cannot be derived in closed form from the transition functions and error distributions.
In the appendix, we explain how to handle this within the existing RLI framework and

how the same approach carries over to the algorithms proposed in this paper.

2.3 Parameter Estimation using Recursive Likelihood Integra-
tion

To use state-space models, e.g., for policy experiments or to evaluate counterfactuals,
one typically needs to estimate the parameters 6 of the model first. A popular approach
is maximum likelihood estimation; however, for models other than the linear-Gaussian,
the likelihood forms an integral over the latent sequence that is not available in closed
form. Moreover, because estimation requires evaluating the likelihood for many candidate
values of 6, a fast and accurate approximation of this integral is essential.

The recursive likelihood integration (RLI) algorithm provides such an approximation
by applying deterministic numerical integration and interpolation methods. Furthermore,
being fully deterministic, it avoids issues related to noisy objective functions and their
optimization, which are inherent in some alternative approximation and estimation meth-
ods. Since the methods we develop in Section 3.1 build on similar ideas than RLI, we
consider it worthwhile to briefly outline them here.

Given a model (1)-(2) that admits probability densities for the data, we define the
likelihood of the parameter vector § € © C RP as the density of the data seen as function
of the parameter and use it for estimating 6. In the full-data case 7 = 0,...,7, the

likelihood is the standard product of the period-wise densities,

T
L (9|{5Et7 yt}tho) = Py ({xt; yt}?:o) = H PQXVY (Yt Te|ye—1, Te—1) - (5)

t=1

However, with x; only observed occasionally, the likelihood forms an integral over the



missing observations:’

L (0yo:r) = P (yor) = Eggr [Pé’O’T'“O’T (yo.r|To:T)

= /T+ PéX’Y (yo:r|Tor) dPY" (zo.1)
ST+t

- /STJrl POX’Y ({xﬁ yt}z;o) de:T
S
= /ST“ H Py (Ys, velys—1, ve-1) dwo.r. (6)

Recall that S, is the domain of x; in a single period, hence the domain for the sequence
Top is STHL.

The likelihood integral is typically unavailable in closed form and must be approx-
imated. In particular for nonlinear models, the integral must be computed numerically
or by simulation. Although the integrand is a product of terms, the integral does not
factor, making approximation of the integral challenging: each Py (y¢, ¢|yi—1,x1—1) in-
volves two integration variables x;, z;_1; due to this pairwise entanglement the integral
has dimension (7" + 1).

As a consequence, many practitioners use simulation-based integration methods.
However, Monte Carlo approximations have probabilistic error O, (1, ;}Z{ 2), where Ny i8
the number of evaluations of the model transition functions Wy, @y (cf. Eq. (1)-(2)), and
therefore require substantial computational effort for high accuracy. Furthermore, while
simulation methods can in principle be adapted to settings with occasional observations—
for instance, a particle method for mixed-frequency models (Schorfheide, Song and Yaron
(2018))—we are not aware of general implementations or formal treatments that system-
atically incorporate such observations. In this paper, we use particle smoothing as the
benchmark for simulation methods and provide further details in the Appendix.

Estimation requires repeatedly evaluating the data density at many candidate para-
meters, so speed is critical. This holds for likelihood-based estimation—where we search
for a maximizer by iterating over the parameter space—and for Bayesian estimation—
where we form the posterior by evaluating the likelihood at draws of § from a prior or
proposal distribution. When optimization is challenging (e.g., due to a large or poorly
conditioned parameter space) or when the prior /proposal is difficult to sample from, these
computational demands are magnified.

Recursive likelihood integration (RLI) by Reich (2018) is a recursive algorithm that
approximates the likelihood efficiently and, as shown by Gilch et al. (2025), seamlessly

incorporates occasional observations. Its recursive structure decomposes the likelihood in-

SRecall that we assumed 7 = () for the rest of this paper, hence, no occasional observations of x; are
part of the dataset.



tegral into T" lower-dimensional—but nested—integrals. RLI approximates this sequence
of nested integrals by alternating numerical integration and interpolation. Importantly,
the approximation error can be controlled by utilizing fast-converging numerical integ-
ration and interpolation methods, yielding better convergence rates than related simula-
tion methods. ¢ Additionally, the approximated function is deterministic and therefore
doesn’t suffer from simulation noise.

RLI is the basis for similar algorithms we develop in Section 3. We provide details

on its derivation and implementation in the Appendix.

2.4 Two Inference Frameworks for Missing Observations

We base inference for the missing sequence on the state-space model-induced law P, oTlvo:r

In Section 2.4.1, we treat the parameter as known, so plug-in inference accounts only for
model-induced randomness. However, 6 is typically estimated from the same data yg.7
so plug-in estimates are subject to parameter uncertainty. In Section 2.4.2, we formalize
predictive inference as a frequentist framework for estimating the missing sequence under

parameter uncertainty. We

2.4.1 Plug-in Inference

When treating 6 as known (or estimated with negligible uncertainty), inference on the

missing sequence o1 is based on the conditional (smoothing) law

Péx’y({iﬂta Yi}io)
Py(yo.r) 7

P;CO:TMJO:T ( (7)

To.r | Yor) =
i.e., the joint distribution of the latent states given the observed data yo.r = {y;}._, under
the model. The law P, 0:le():T(' | yo.r) quantifies how compatible each entire path xg.r
is with the realized finite sample yq.1; different data would yield a different distribution
of paths. Because state and measurement equations contain random shocks, there is no
one-to-one mapping from .7 to xo.r: even at a single time ¢, multiple state values are a
priori compatible with the same observation and with neighboring states. Conditioning
on yo.r assigns to each candidate value z; = = a conditional probability (mass/density),
and these assignments across all ¢ and all paths make up P, O:T‘yO‘T(- | yo.r). Since P, o:T[yo:r

is high-dimensional,” we summarize it through timewise functionals (e.g., mean, mode,

5To be concrete, the approximation error of the deterministic integration and interpolation methods
accumulates linearly with the time-series length T'; however we consider T to be fixed in this paper.(Gilch,
Reich and Wilms, 2025) show how to adjust RLI for T'— oo to also obtain asymptotically small approx-
imation errors.

"Note that while formally (T + 1)-dimensional, the Markov property of the underlying time series
implies typically fast decaying covariances between far away periods, hence the covariance matrix of
Py T[0T |ag near-zero entries far away from the diagonal and most of the mass of the distribution,
while technically high-dimensional, concentrates around a lower-dimensional subspace of R(T+1)
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and variances for z;) and through simultaneous plug-in prediction sets that constrain the
entire latent path. We call these sets “prediction sets” to be consistent with the predictive
inference setting we introduce later, which is based on the existing predictive inference
literature for out-of-sample inference.

Asymptotically, the distribution over the missing sequence does not con-

P;o:leO:T
centrate on the realized sequence; instead, at any fixed time ¢ the marginal smoothing
law converges to a limit distribution conditional on the infinite sample 1q.... Recall that
we are in a time-series setting, so the asymptotic framework means letting the sample
length grow (I'" — oc). Even with infinite data, the model-induced randomness at a
given period t does not vanish. Exactly as in finite samples, multiple state values remain
compatible with the observations and the neighboring states. This limit is still data-
dependent: it is a random measure determined by the realized yp.... Correspondingly,
features of the finite-sample smoothing distribution (mean, mode, quantiles, and plug-in

xO:oo‘yO:oo .
PH 5

prediction sets) converge to the same features under in particular, the widths

of plug-in prediction sets converge rather than vanish.

Pg‘"OIT‘yOZT over the possible paths is

Because the full joint conditional distribution
high-dimensional, researchers typically report (i) a smoothed point path together with
(i) a simultaneous plug-in prediction set to express model-induced uncertainty over the
missing sequence. For the former, we use either the mean z; := Ey[X; | Yo.r| for all
t € T or the mode (MAP). The mean is the MMSE estimator under squared loss; the
MAP corresponds to a frequentist “mode” summary and is often easier to compute via
optimization.

For the latter, we seek a random set XQ(H,yOZT) C SJETH) such that it contains the

entire latent path with probability at least 1 — a:
P;O:T‘yOZT<xO:T S Xa(07 yO:T) ‘ yO:T) 2 1— Q. (8)

This condition enforces simultaneous (pathwise) coverage and is stronger than having
(1—a) pointwise intervals at each t. As (8) does not pin down a unique set, a construction
rule is required.

In Section 3.1.2 we define the one-scale class of prediction bands, which includes
many common prediction band constructions, and show how to compute the unique

exact plug-in prediction band in this class.

2.4.2 Predictive Inference

To include uncertainty from parameter estimation, we move to a frequentist framework
and define prediction sets using predictive inference, naturally augmenting the previous
plug-in prediction set.

The plug-in prediction set from the previous section is undercovers, whenever the

11



parameter 6 is estimated with error (typically from the same sample yo.7). In some
applications this uncertainty is negligible—e.g., when 6 is estimated from very large
and informative samples—so researchers sometimes forgo any correction (Durbin and
Koopman (2012)). In many time-series settings, however, samples are short (macro
data), or model dimensionality is large relative to the available information, so estimation
uncertainty in 0 remains material even for substantial 7.

Two prominent remedies are Bayesian inference and parametric bootstrap methods.
The Bayesian route introduces a prior on 6 and propagates posterior uncertainty about
0 into the law of the latent states; while principled, it requires prior choices that some
practitioners prefer to avoid. Some frequentist alternatives therefore rely on simulation-
based calibration: the parametric bootstrap re-generates the series {x;,y;}_, under the
fitted model, re-estimates @, and uses the resulting empirical distribution of 0 to quantify
parameter uncertainty and fold it into smoothing or prediction sets (e.g. Pfeffermann and
Tiller, 2005; Rodriguez and Ruiz, 2009; Rodriguez and Ruiz, 2012).

We adopt a frequentist predictive framework (cf. Geisser (1993)) to incorporate para-
meter uncertainty but avoid any simulation. Usually, predictive inference is applied for
out-of-sample prediction, e.g., for estimating the next observation yr., given our data set
yo.r periods. In particular, it incorporates uncertainty of the parameter directly into its
predictions. We rephrase predictive inference to estimate the missing observations xg.r
given the data, utilizing the same intuition to account for parameter uncertainty.

For each level a € (0, 1), a prediction set is a random set S, (yo.r) satisfying uniformly

for all possible parameters 6
im inf inf P, (zq, 7)) > 1—a.
IITHLLI.}f ;g(g Pt (xor € Sa (Yor)) > 11—« 9)

This probability is frequentist: imagine repeatedly generating full series yo.r and the
associated latent path zo.r from the model and recomputing the set S, (yo.r) each time.
Thus, coverage averages over the sampling of yy.7 and the induced randomness in 0 (yo.r).®

Unlike the plug-in case—where one reports a conditional distribution given yy. un-
der a known parameter #—we target unconditional predictive coverage, i.e., averaging
over repeated sampling of both xy.7 and yg.r, to account for the randomness of é(yogp).
Intuitively, conditioning on the realized yo.r removes sampling variability; as a result, the
parameter estimator é(yO;T) is fixed, and there is no residual uncertainty that S, (yo.7)

can control for. With unknown parameters, an exact conditional target such as

Py (iL‘o:T € Sa(Yo.r) ‘ yO:T) =1l—-a as. inyor (10)

is therefore generally unattainable when S, (yo.r) depends only on the observed data.

8In applications where per-time reporting is preferred, we later also consider simultaneous prediction
bands {B;..(Y)}._, as a common subclass of prediction sets.
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Condition (10) requires the set based on that yo.r to achieve 1 — a uniformly across
all possible 0; to “hedge” against unlikely (6, yo.7) combinations, one must inflate S,
substantially—often to the point of being uninformative. °

In principle one would derive the joint finite-sample law of (éT, xo.7) under repeated
sampling to calibrate S, but in state-space models this is typically intractable. Therefore,
practically, S, (yo.r) will be constructed from the estimator O = é(yoq) together with an
explicit adjustment for its sampling uncertainty, e.g., using a confidence set for 6.

Taking asymptotics in T" has two consequences for interpretation: First, as already
emphasized in the plug-in setting, smoothing uncertainty reflects model-induced random-
ness. Therefore, even with abundant data, the predictive set does not shrink to a singleton
(the set only containing the true sequence). Second, with unknown 6, the coverage guar-
antee we target is approximate: in practice, S,(yo.z) attains its nominal level only as
T grows. This is the usual tension between the theoretical properties of large-sample
frequentist inference and the finite-sample demands of the researcher’s reality.

Finally, a natural goal is that the prediction set under parameter certainty con-
verges, in large samples, to the plug-in set we defined in the previous subsection; yet,
such convergence is not automatic. As T — oo, parameter uncertainty vanishes under
standard regularity, so the true 6 is effectively known and we can compute the plug-in set
evaluated at the true parameter S*(yo.r;6). That target is stronger than the uncondi-
tional predictive target because it delivers conditional coverage given yo.7. The question,
then, is whether the prediction set we construct for the finite-sample, unknown-60 case
converges to this plug-in (true-0) solution as T grows. This would be desirable: even
though exact conditional coverage is unattainable in finite samples, it would be recovered
in the limit. However, the unconditional predictive target admits multiple asymptotic
solutions; by definition these need only satisfy unconditional coverage in the limit. The
plug-in (true-0) set is one such solution—since it is also unconditionally valid—but it is
not the only one. Therefore, the predictive inference construction must explicitly encode
a limit preference, selecting the plug-in (true-) limit among the admissible unconditional
limits. Without such a tie-breaker, a predictive procedure may converge to a different
valid limit that is typically more conservative than the plug-in set.

In Section 3.2 we develop and implement a constrained optimization algorithm,
whose solution is a prediction set achieving predictive inference as defined in (9) under
standard regularity. Moreover, our construction is designed to deliver the desired asymp-
totic, i.e., our prediction set converges asymptotically to the exact plug-in prediction set

defined in the previous subsection.

9In distribution-free settings this tension is formalized by impossibility results for exact conditional
coverage (e.g., in conformal prediction, Vovk (2012)). Parametric structure relaxes but does not eliminate
the issue: demanding exact conditional validity typically yields very large sets unless the model admits
special pivots or ancillary reductions.
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3 Numerically Efficient Frequentist Inference for Miss-

ing Observations

We contribute along two fronts for state-space models with missing data. First, we
develop an recursive quadrature and interpolation (RQI) algorithm for fast, accurate ap-
proximation of plug-in point estimators and prediction bands providing a computationally
cheaper deterministic alternative to simulation-based methods. Second, we construct a
prediction band union—which explicitly incorporates parameter uncertainty—by solv-
ing a sequence of constrained optimization problems. These pieces are complementary:
plug-in bands undercover in small samples, which the uncertainty-aware bands correct,
while the optimization routine repeatedly calls the plug-in bands and is therefore only

computationally feasible because the latter can be approximated efficiently

3.1 Numerical Approximation for Plug-in Inference

Existing approaches for computing point estimators and plug-in prediction bands deliver
only Monte-Carlo accuracy O (N e_vi{ 2) and struggle to incorporate occasional observations.
Wald-type bands with Bonferroni corrections are an ad hoc alternative but are typically
over-conservative. We develop RLI-based deterministic algorithms that compute plug-in
point estimators and prediction bands with polynomial error convergence rates, enabling
tight, well-calibrated bands; a stochastic-volatility study on simulated data illustrates

these gains.

3.1.1 Plug-in Point Estimators

The two most common candidates for point estimators of the missing sequence are the

mode and the mean of the conditional distribution P, o1l907  The mode,

Toq = argmax, o1 Py (g0 rlyoer) (11)
P ({z Jy vE

= argmax, . .gT+1 0 ng(;()?;t)}t& (12)

= argmax, .. gT+1 H Py (4, yel w1, Y1) (13)

teT

is the most likely sequence given the data: Analogous to the maximum-likelihood estim-
ator, it has the highest density among all possible sequences, and is therefore standard in
the literature. Computationally, the mode is the solution to a single (7' + 1)-dimensional
maximization problem, where the objective function requires only computing the joint

density of all variables, because the denominator is a scaling factor; hence, no integration
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is needed. °

Alternatively, the mean of the conditional density,

Zo.r (0, y0r) = Eolzor | Yor] (14)

is often considered, particularly in Bayesian estimation. For each t € T, we have a

separate integral
T (0,y0r) = / Tt Py(Zo.r | yor) dZo.r (15)
s+t

which integrates x; against the conditional density over the full latent path. As for the
likelihood, the integral is usually not available in closed form and the integrand cannot
be decomposed easily to break up the integral: hence, numerical approximation of the
integral is both necessary and computationally challenging.

Particle smoothing methods can be used for to approximate Zo.r (0, yo.r) but they
have two problems: First, their asymptotic error rate is the usual Monte Carlo error rate,
Op(Ne_vZ{Q), where N, is the number of evaluations of the model transition functions
Uy, @y (cf. Eq. (1)-(2)), so a faster algorithm is desirable. Second, we are not aware of
particle smoothing methods that natively incorporate occasional observations in settings
with possibly endogenous observation mechanism into their sampling scheme (see Gilch

et al. (2025) for a review of this literature).

3.1.2 Plug-in Prediction Bands

Conditional prediction bands given the data and a fixed parameter are not unique, so we
focus on the one-scale class, where a single scale ¢ determines the band and the exact
plug-in set is uniquely identified by a monotone coverage equation. Computing that
coverage entails a high-dimensional integral—akin to those for the likelihood and the
mean—so simulation yields only O(N ;Z{ 2) accuracy and handles occasional observations
poorly, while ad hoc Wald bands avoid integration but only deliver point-wise inference.
This motivates a fast, high-accuracy algorithm for evaluating coverage and recovering the
exact plug-in band.

In Section 2.4.1, we defined the plug-in prediction set as a random set based on a
fixed parameter 6 and the data yg.r such that it has coverage 1 —a w.r.t. the conditional
distribution of the missing sequence. However, this definition is too general to deliver a
unique prediction set for a given . Therefore, we restrict the space of admissible sets to

well-defined classes in which the exact plug-in set is unique (under mild monotonicity and

10Tn this paper, we do not make a formal statement about the complexity of the former, but we
argue that numerical solvers typically find the maximum fairly quickly. In particular when the relevant
densities are differentiable, which is usually the case because economic models are often defined using
smooth functions.
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continuity assumptions on the models transition densities). The literature has focused on
two such classes, each admitting a unique set at level a: the one-scale class of prediction
bands (Montiel Olea and Plagborg-Mgller, 2018) and highest density regions (HDRs).
Both can be implemented by imposing additional constraints on the plug-in set X. In
this paper, we focus on the former as it delivers easier-to-visualize prediction bands.

In general, prediction bands By are hyperrectangles in the space of missing sequences

Sa(;TH), meaning they can be written as a tensor product of bounded intervals
By (0, yor) = X [Z: (0, y0:1) , Tt (0, your)] - (16)
t¢T

This allows for a one-to-one projection of such sets into the standard visualization as
a one-dimensional band along the time axis. Hence, prediction bands don’t exhibit a
projection error, which is usually arising when projecting high-dimensional sets into such

1" The one-scale class of prediction bands consists of prediction bands,

a visualization.
hence exploiting the lack of a projection error, and additionally constrains the possible

intervals to scale jointly, making it is easy to find the unique exact set in this class:

B9<C) = BQ(Cv 07 yO:T) = >< [:%t — COy, ‘%t + CUt] ) (]-7)
tgT

where & is one of the point estimators defined earlier, o, = /Varg[z; | yo.7] is the con-
ditional standard deviation of x; given the data, and c¢ is the common scale applied
simultaneously to all ¢ ¢ T. In the following, we drop the dependence on @ and yo.r
to simplify notation. Montiel Olea and Plagborg-Mgller (2018) define this class for con-
ducting simultaneous inference on multiple parameters and impulse response functions of
VARs—a computationally less demanding, though less general, setting—and argue that
this class in fact includes many commonly used prediction bands in empirical work.
Importantly, under suitable assumptions on P(;X Y12 the coverage of bands in the
one-scale class of prediction bands is strictly increasing and continuous in ¢. Hence there
is a unique ¢*(«) such that By(c*(«)) attains exact coverage 1 — a with respect to the

conditional distribution of the missing sequence. In particular, the prediction band with

1 The projection error is the difference in probability coverage between an T-dimensional set A C R”
and its projection into a one-dimensional representation A. By the latter we mean a series of (one-
dimensional) intervals [at, @] s.t. a; = minge4 a; and @; = maxgeq a¢. In particular in the time series
context, formally high-dimensional sets such as A are usually represented through such projections, i.e.,
through a “band” with upper bound a; and lower bound a; for each t. However, this representation, as
T-dimensional set, is larger than A and therefore incures the projection error e(A, P) = P(A)—P(A) >0
for any probability measure on R”T. By considering only prediction bands as admissible prediction sets,
this projection error becomes 0 for all candidate prediction sets and, hence, the visualization of the
prediction set coincides with true set and actually achieves correct coverage.

12This includes: no plateaus, no point masses.
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exact coverage 1 — « is the unique solution to the root-finding problem

R(c) = By (20,0 € By(e) | yor) — (1 — @) = 0, (18)
with solution ¢*(«). As the coverage function R is strictly increasing and continuous,'
any numerical solver can find ¢*(«) fairly quickly if we can evaluate the coverage of By(c).
In practice, we bracket ¢ on [0, ¢pax] S0 that coverage at cpax definitely exceeds 1 — «
then use bisection or Newton.

However, similar to the likelihood and the mean, the coverage poses a computational

challenge, because it is a (T + 1)-dimensional integral over the hyperrectangle,

Py (0.0 € By(c) | yor) = / Py (o | yor) dior, (19)
Bg(c)

which generally does not decompose into one-dimensional integrals for the same reason

as the likelihood in Section 2.3.

Existing approaches either compute the integral using smoothed particles or avoid
it altogether, in which case they are not valid for simultaneous coverage. With particle
smoothing, a plug-in prediction band can be implemented, but the approximation error
decays at the same (slow) rate, O, (N_1/2

eval ), as for the plug-in mean. Other approaches

do not compute the coverage at all but rely on Wald-type bands: these fall within our
one-scale class, yet the scale ¢ is chosen as the critical value of a Normal or ¢-distribution.
Concretely, they set & to the mean and oy to the (approximate) marginal standard devi-
ation, then take c as the univariate critical value—thereby ignoring the joint dependence
that simultaneous coverage must account for. This works if the model is genuinely close
to linear and Gaussian, but when the model is far from linear-Gaussian such ad hoc
choices can be very inaccurate. Even when a linear-Gaussian approximation seems reas-
onable, this approach only yields pointwise prediction bands, whereas we are interested
in simultaneous inference. Adjusting these to be simultaneous, e.g., via Bonferroni, tends
to be overly conservative (Montiel Olea and Plagborg-Mgller, 2018).

In the following section, we show how to evaluate (19) deterministically via a RQI

algorithm, based on the concepts of Section 2.3, that also handles occasional observations.

3.1.3 Recursive Quadrature and Interpolation

To approximate the integrals (15) and (19) needed for the point estimator and the plug-in
prediction band respectively we develop a recursive quadrature and interpolation (RQI)
algorithm. While both integrals can be computed using a particle smoother, the RQI

algorithm achieves much faster convergence rates compared to the usual probabilistic

13Under suitable assumptions on Pp; e.g., no plateaus on dBy(c) and o; > 0 for all t ¢ T. See also
Footnote 12.
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Monte Carlo rate. In particular, this makes the repeated computation of plug-in estim-
ators needed in Section 3.2 much more feasible.

Similar to the recursive likelihood integration (RLI) algorithm discussed in Section
2.3 and the Appendix, RQI consists of two components: A recursive formulation of the
involved integrals and a numerically efficient approximation of each recursion step using
alternating quadrature and interpolation rules. RQI generalizes RLI in two aspects:
First, we allow more general integrands, extending the applicability of the algorithm to
the computation of the expectation of any integrable function g,(x;_1,x;), whereas RLI
only does g;(z;—1,2;) = 1, i.e., the likelihood. Second, we allow more general integration
domains such as hyperrectangles, i.e. prediction bands, whereas RLI is designed for
integrals over the full domain.

We start by defining the recursion for the integral over a general integrand Hthl 92 (T, we1).
For allt =0,...,T — 1, we define the function f;:

[l (@) = / 9 (T vi1) Po(ye, Tt | yomr, Te—1) fron (Be) A2y (20)
Sz

The recursion exploits the conditional structure of the state-space model to evaluate
the integral one dimension at a time. Because the integrand for z; is the conditional
distribution of x; given x;_1, the result of integrating over z; is itself a function of x;_;.
Hence, in the next step, this function becomes part of the integrand for the integral over
Ty q.

We start this recursion at 1" with
Fo () = / 60 (Er, 2r—1) Polyr, v | yr—y, ar1) dir, (21)

because there is no state z7,1 in our data set. Iterating backwards, we obtain

T 0 . —
- - ~ f (130)7 lf 0 S T)
/ Hgf(fft, 2i-1) Po(Zor | Yor) dTor = ! (22)
ST 1o, else.

Note that the final step of the recursion depends on whether z( is observed. Similarly,
whenever a state x; is observed, the corresponding integration collapses to a simple eval-
uation at the observed value.

To obtain the mean for a given period ¢’ ¢ T, i.e., the integral Eg[xy | yo.7], we pick
the integrands

04 /s~ jt, lft:t/,
gr" (e, x41) = (23)
1, else.
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foreach t = 0,...,T. We obtain the entire mean path by repeating the computation of (21)
with the corresponding gf * for each t' € T. Note that choosing a different gf " delivers
other moments of the smoothing distribution, e.g., via gf’t/ (T, 1) =22 if t =t and 1
otherwise for the second moment (and thus the variance), and ¢*" (&, z,_1) = &y x4 if
t =t and 1 otherwise for the autocovariance of the two consecutive states zpy_; and zy.
This becomes relevant when constructing confidence bands based on the variance of xy
for each t' € T. However, while any function depending only on two consecutive states
can be handled in this way, further adjustments are needed for more general moments
and functionals, which we leave for future research.

To compute the coverage integral (19) for plug-in prediction bands, we also use an
recursive representation of the integral, this time adjusting the integration bounds (rather

than the integrand) to

f(w11) :/ Po(ye, B | yer, w1-1) [ (8) dy. (24)
Recall that we defined the bounds of the one-scale class in Section 3.1.2 as a; = x; — coy

and a; = x; + coy. As before, the integral is obtained at the final recursion step,

~ O(xzy), ifageT,
PBxO:T‘yO:TvNeval (xOT E BQ(C) | yoT) — fl ( 0) 0 (25)
1Y, else.

Given this algorithm to compute the coverage of plug-in prediction bands, determ-
ining the correct band in the one-scale class for a given prediction level a reduces to a

single root-finding problem over the scale ¢ of By, where the solution ¢* satisfies
Pyt (200 € By(e*(@)) | yor) — (1 —a) = 0. (26)

Solving this is straightforward because the coverage is monotonically increasing and con-
tinuous in ¢ (provided P, oTlVO:T has no point masses), so there is a unique root that
standard methods (e.g., bisection or Newton) can find quickly.

Given the recursive formulations (20) and (24), the recursive quadrature and inter-
polation (RQI) algorithm approximates the full integral by integrating and then interpol-
ating each f; sequentially, starting from ¢ = T'. First, RQI approximates the conditional
integral f?(z;_1) at a fixed set of interpolation nodes z;_; = x;_1,; using a numerical
integration rule. Next, it approximates the full function f? by interpolation from the
computed values f!(z;_1;). This procedure is analogous to the recursive likelihood in-
tegration (RLI) algorithm discussed in Section 2.3 and in more detail in the Appendix.

Recall that N, denotes the number of evaluations of the integrand g% (7, z:1) Pa(ys, 74 |

Yi—1,T4—1) or Pp(ys, Tt | Ye—1,2¢—1), respectively. In practice, this usually corresponds
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to evaluating the model transition functions Wy and @, (cf. Egs. (1)-(2)). For RQI,
Ny includes evaluations required for both numerical integration Ng and interpola-
tion Nz. In particle filtering and smoothing, N.,, counts the evaluations per forward-
filtering /backward-smoothing step and is thus analogous to the total number of particles;
error rates for particle methods are likewise expressed in terms of this number.'*

To evaluate the accuracy of RQI relative to particle methods, we compute the ap-
proximation error as a function of the number of function evaluations, N,,q, required to

compute the approximation:

1(9) = 1(9)] = O(h(Nevur). (27)
where I(g) is the integral over a function g, I(f) is its approximation and h(Neyq) in-
dicates how quickly the approximation error vanishes as N.,,— 0o. For different ap-
proximation algorithms, this function varies and ususally depends on whether and how
often ¢ is continuously differentiable. For simulation methods, such as the forward-
filtering /backward-smoothing particle filter, we have the traditional Monte Carlo rate
h(Neyar) = N;;{Q. Note that this rate is probabilistic, hence holds only on average, but
on the other hand doesn’t require differentiability of g.

The main advantage of RQI over simulation-based methods is that it leverages
fast-converging numerical quadrature and interpolation rules in each recursion step,
and that the full approximation inherits their convergence rate. Our convergence ana-
lysis relies on the assumption that the integrands ¢ (s, ¢—1) Pa(vs, Tt | ye—1,7¢-1) and
Py(yi, &y | y4—1,2—1) are r-times continuously differentiable in Z;. In particular, ffﬂ(f:t)
is then also r-times differentiable. For g¢; this is immediate in our use cases; for Py, it
typically follows from the differentiability of the model transition functions and therefore
depends on the specific model specification. Given this assumption, we can apply numer-
ical integration and interpolation rules designed for r-smooth functions to approximate
the lower-dimensional f; with rates O(Ng") and O(N7"), respectively. Following the
arguments in Reich (2018) and Gilch, Reich and Wilms (2025), the approximation error
does not accumulate across recursion steps. Consequently, the full approximation retains

the same fast convergence rate both for the conditional mean,'®

=O(N_.), (28)

v —Neual
Ly — Xy eval

max
t=0,...,T

141n contrast, the total computational effort Nysq; is the number of function evaluations required to
compute the full object (e.g., the likelihood, mean sequence, or prediction band coverage). It scales
linearly with Neyqs, although the multiplicative constant may depend nonlinearly on 7.

15We treat T as fixed, reflecting the empirical setting in which a researcher has a dataset of length T’
and performs inference for that particular sample. Accordingly, we omit all T-dependence in the reported
convergence rates. For the stated rates, it does not matter whether we write Neyqr Or Nioral, Since the
proportionality constant is absorbed by Landau-O notation.
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and for the coverage integral,

eval

P;O:TkUO:T ($0:T c BQ(C) ’ yO:T) - P;’O:T|y0:T ($0:T € BQ(C) | Z/o;T)| = O(N*T) . (29)

Moreover, if P, oTlvo: i differentiable, replacing the coverage integral by its RQI
approximation is unproblematic: the root ¢* of the approximate equation converges to

the true root ¢* at the same rate as the coverage approximation in (29). In particular,

Ak

¢ — ¢ atrate O(N_.), (30)

eval

so the combination of a fast-converging coverage approximation and a simple root search
yields plug-in bands with exact coverage 1 — « faster than particle smoothing methods.

To summarize, under sufficient regularity of the joint conditional distribution

zO:T‘yO:T

we can provide fast-converging approximation algorithms for both the mean and the ex-
act plug-in prediction band, whose convergence rates significantly improve over existing

methods based on simulation.

3.1.4 Numerical Analysis: Stochastic Volatility Model

We demonstrate the numerical performance of our RQI approximation for both the mean
and the plug-in prediction band for the volatility series x; in the stochastic-volatility
model. We show that the relative approximation error of the mean integral decays much
faster under the RQI algorithm than under the FFBS particle smoother. The same holds
true for the plug-in prediction band, despite its computation involving a root-finding
problem.

Stochastic volatility models are a central tool in financial econometrics and serve
as a natural test case for assessing estimation methods. We benchmark the numerical
performance of our RLI-based approach against standard simulation-based methods and
confirm the expected computational speed-ups predicted by our theoretical results.

We consider the simplest version of a stochastic volatility model with one observed
variable (e.g., an asset return series) and one unobserved variable, the time-varying and

serially correlated volatility z;. Its state-measurement equations are

e = p+ ", (31)
Ty = pTi-1 + &, (32)

with n, K N(0,07) and & N0, 02). With parameter vector 6 = (1, p, 0y, ),

this stochastic volatility model is a straightforward instance of the state-space setup in
Equations (1)-(2), with fully tractable P}, P5, ¥y, and ®p. The transition densities are

available in closed form. A key feature of the model is time-varying volatility, which
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captures periods of high vs. low uncertainty in the data. It does so continuously, with p
governing the persistence of high- and low-volatility regimes, thereby avoiding the more
restrictive regime-switching approach with a discrete number of clearly separated regimes.

Obviously, this is a bare-bones specification, but countless richer versions exist, in-
cluding additional explanatory variables, (seasonal) trends, and so forth. However, the
main complication is already present here: the latent state enters the measurement equa-
tion highly nonlinearly, so linearization-based approximations can quickly deviate from
the true dynamics. Consequently, there is a large literature on estimating stochastic
volatility models, with a strong focus on particle methods.

Recall that the primary objective of our algorithm is to reduce the number of function
evaluations needed to compute the mean or the prediction band. In elaborate structural
economic models, the functions ¥, and ®y can both be expensive (e.g., if they require
solving an optimization problem or evaluating an expectation). Since, in macro models,
the transition equation for the latent state x;, i.e., ®y, usually contains these complex
components, we take the number of evaluations of ®y as our measure of computational
effort, N,,q.'® This is consistent with our convergence-rate derivations for the RQI al-
gorithm and the particle smoother: in the former, Wy and ®4 (or the corresponding

densities) are always needed synchronously; in the latter, ®y is required in both filtering
~1/2

ooy ) but with different constants.'” In this sec-

and smoothing, implying the rate O,(N,
tion, we use a Stochastic Volatility model with inexpensive densities, and report cost in
function evaluations so the metric carries over to more complex settings.

We use the relative approximation error to display how well each algorithm approx-
imates the true solution for a given total number of function evaluations, N;u,. For a
functional I(g), e.g., the mean or the coverage integral or the root ¢* scaling the exact

plug-in prediction band, and an approximation I Nyorat(G) using Nioeq evaluations of g,
define

1(g) = In,u(9)
e(1(g), Niptat) = ftotal 33
The relative error can be read as “digits of accuracy where it matters,” rather than simply

counting decimals. In our setting, the true value I(g) is usually not available in closed
form. Therefore, in our implementation we use a high- Ny, run of the RQI algorithm to
obtain a near-exact benchmark for 7(g) and substitute this benchmark into the formula
above.

We report the approximation error against N, to visualize the actual computa-

16We treat additional overhead from setting up the algorithm as a fixed cost that becomes negligible
both for large models and with efficient implementations. If Wy is the dominant cost in a given application,
we define N,q; analogously as the number of evaluations of Wy.

ITTf Wy is the dominant cost in a given application, then smoothing is less costly because no new
evaluations of Wy are needed in the backwards smoothing step.
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tional effort needed to achieve a target accuracy. This is necessary because the Nyu
is proportional to N,y for both the RQI algorithm and Particle smoothing, but with
different proportionality constants. Hence, the actual N, needed to reach the target
accuracy does not only depend on N, but also on this linear constant. However, we
can still compare our empirical rates with the theoretical ones, because these different
constants effectively only imply an earlier or later start of the asymptotic error whereas
the slope is the same.

Figure 1 reports relative approximation errors for the plug-in mean path computed
by our RQI algorithm and by a basic FFBS particle smoother. We focus on plug-in
means (true ¢, no parameter uncertainty) and consider two horizons, 7" € {10,100}.
The former is representative of settings with frequent occasional observations (e.g., short
gaps), while the latter matches macro/financial series at quarterly or annual frequency.
We simulate the full data—mno real data in this subsection—, initializing it with draws
from the stationary distribution, and use S = 10 Monte Carlo replications to smooth the
reported rates (deterministic for RQI, but helpful for the probabilistic FFBS errors).

RQI uses Gaussian-Hermite quadrature for the integration steps and cubic splines
for interpolation. In this smooth model, Gaussian-Hermite can achieve near-exponential
convergence, while cubic splines achieve their nominal rate » = 4. Therefore, we keep
Ng practically fixed and increase Nz to balance the two errors and approach the optimal
full rate (theoretically close to r = 4).% As a baseline, we implement a standard FFBS
particle smoother following Chopin and Papaspiliopoulos (2020).

We compute approximations of each integral with increasing N, (and, thus, Ni),
i.e., we use an increasing number of quadrature and interpolation nodes for the RQI
method and an increasing number of particles for FFBS. To obtain the full mean sequence,
RQI must evaluate all T" integrals in (15) separately; hence we sum function evaluations
over all computations. In contrast, the FFBS algorithm requires only one run to generate
particles that can be used to compute the entire sequence.

We report convergence in two ways. First, for each approximation run with Ny

function evaluations, we report the mean error, averaging over t and s:

é(](g), Ntotal) - SLT Z Z e(lst(g)a Ntotal) ) (34)

t=0 s=1

where I (g) is the mean integral for the s-th simulated data set and period ¢, and g is the
function whose evaluations we count—in this case, ®4.'* Second, we report the variation
in approximation errors by displaying the full range (min-max across t,s) of errors at

each Nipta.

18See Reich (2018) for more details on balancing integration and interpolation.
9Recall that it is not the integral over ®¢, but that ® is needed to compute the mean, and only its
evaluations matter for computational effort.
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Figure 1: Numerical performance of RLI-based mean approximation vs. particle smoother

— RQI: Median — PS: Median
RQIl: Central 80% (P10-P90) PS: Central 80% (P10-P30)
1014 RQI: Full range (min-max) PS: Full range (min-max)
100 4
= 10—1_
e
—
L0
o 10724
=
2
o
& 1031
104+
1079 1
10761
103 104 10° 108 107 108 10°
Number of evaluation points
(a) Horizon T' = 10
—— RQI: Median — PS: Median
RQI: Central 80% (P10-P90) PS: Central 80% (P10-P30)
10! - RQI: Full range (min-max) PS: Full range (min-max)
100 4
L 10714 — L
o
[
v 10724
=
]
o
(] -3
e« 10 —4
10~*1
10—5 4
10—6 4
103 104 10° 106 107 108 10°

Number of evaluation points
(b) Horizon T' = 100

Notes: We compute the mean sequence for the time-varying volatility {z;}~_, for the Stochastic Volatility
model (Egs. (31)-(32)) and S = 10 simulated data sets of length 7" = 10 and T' = 100 respectively. We
use our RQI algorithm as well as a standard FFBS bootstrap Particle smoother, each with increasing
total numbers of function evaluations Ny, We report the mean as well as the range of the relative
approximation error as defined in Eq. (33), taken over all simulated data sets and all periods of the mean
sequence. For reference, we provide triangles with slope r = —4 and r = —1/2 indicating the theoretical
convergence rate for RQI (with Gaussian quadrature and cubic interpolation) and particle smoothing
respectively.
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Errors are plotted on log-log axes, as is standard to display convergence: increasing
Niotar by one order of magnitude should add r digits of accuracy. From the theory above,
we expect slopes near r ~ 4 for RQI (in this smooth Stochastic Volatility setting) and
r = 1/2 for FFBS. For readability, we overlay reference lines with the approximate
empirical slopes.

As expected, RQI converges much faster to the true mean, with an empirical rate
close to r & 4. It achieves the same approximation errors as particles with far fewer
function evaluations; given more evaluations, it reaches accuracy levels that are not real-
istically attainable with particle methods. There is a short “burn-in” region reflecting
pre-asymptotic error typical of deterministic quadrature (Gerstner and Griebel (1998)),
but beyond that the log-log slope stabilizes near the theoretical benchmark. RQI is also
reliable in the worst case: the maximal error (over simulations s and periods t) drops
quickly, whereas particle smoothing can exhibit large errors for some periods even with
many particles.

To conclude, for uniformly good approximation (e.g., at least two digits of relative
accuracy), RQI should be preferred: it is faster for a given accuracy and attains higher
accuracy for a given computational budget. If only a very rough approximation is needed,
the FFBS particle smoother may be the cheaper alternative. Practically, this difference
stems from work reuse: particle smoothing can leverage a single run for many summaries,
whereas RQI evaluates integrals separately (e.g., T expectations for the mean and multiple
coverage integrals across candidate ¢ for bands). This structural overhead makes RQI
less attractive in the low-accuracy regime. That said, our current implementation is not
fully optimized: shared recursion segments (e.g., the first T' — ¢ steps when computing
means for all £) can be cached and reused, which would cut evaluations substantially. We
view such reuse as a straightforward avenue for further speedups.

Next, we show the numerical performance of our RQI algorithm for plug-in prediction
bands: We compute plug-in prediction bands for simulated data at coverage level 1 —a =
0.95. As before, we consider plug-in inference (true #, no parameter uncertainty), two
horizons T' € {10,100}, and S Monte Carlo replications with independently simulated
datasets.

We again use Gauss-Hermite quadrature and cubic splines for the RQI method, and
a basic FFBS particle smoother to obtain smoothed particles. For plug-in prediction
bands, recall that they are obtained as the solution of the root-finding problem (18).
This means that, for each simulated dataset, we first compute the mean sequence and
the per-period variances (the fixed ingredients of the one-scale class). Second, a bisection
algorithm iterates over the scale ¢, computing the coverage of the candidate band By(c)—
i.e., approximating a coverage integral for each candidate c via the recursion in (24)—until
it finds the root ¢* at which coverage equals 1 — a.. Since our RQI method computes each

of these integrals separately, the computational effort for the exact plug-in band on a

25



Figure 2: Numerical performance of RLI-based prediction band approximation vs.
Particle Smoother: Scales
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bands as defined in Eq. (26) for the time-varying volatility {z;}~_, for the Stochastic Volatility model
(Egs. (31)-(32)) and S = 10 simulated data sets of length T' = 10 and 7" = 100 respectively. We use
our RQI algorithm as well as a standard FFBS bootstrap Particle smoother, each with increasing total
numbers of function evaluations Ny, We report the mean relative approximation error as defined in
Eq. (33), taken over all simulated data sets. For reference, we provide triangles with slope r = —4
and r = —1/2 indicating the theoretical convergence rate for RQI (with Gaussian quadrature and cubic
interpolation) and particle smoothing respectively.26



Figure 3: Numerical performance of RLI-based prediction band approximation vs.
Particle Smoother: Coverage
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(Egs. (31)-(32)) and S = 10 simulated data sets of length T' = 10 and 7" = 100 respectively. We use
our RQI algorithm as well as a standard FFBS bootstrap Particle smoother, each with increasing total
numbers of function evaluations Ny, We report the mean relative approximation error as defined in
Eq. (33), taken over all simulated data sets. For reference, we provide triangles with slope r = —4
and r = —1/2 indicating the theoretical convergence rate for RQI (with Gaussian quadrature and cubic
interpolation) and particle smoothing respectively.27



given draw equals the sum of function evaluations across all these approximations. By
contrast, for FFBS we reuse the smoothed particles from a single run to approximate
both the mean/variance ingredients and the coverage for different ¢ (by computing the
weighted share of smoothed particles inside the band for a candidate c).

We report relative approximation errors for two targets—scale error and coverage
error. For the exact one-scale band, we identify the solution by its scale ¢*(yo.r). For
each dataset y.,- we compute a high-accuracy RLI reference ¢}, and then report the mean

relative error

eval (35)

—( %
€ (C eval

IIMCQ

suppressing the dependence on « in the notation. Additionally, we report the relative
error in the achieved coverage of the bands delivered by each method. Specifically, using
the RQI method at high accuracy, we evaluate the coverages PxOleOT(B(c:) | Yr)
of the approximated plug-in bands for both methods and compare them to the target

1 —a =0.95. We then average over datasets:

S
é(PGxO:leO:T(B(C*) | yé:?) eval = Z ( xOT‘yOT B(C:) | yS:T)v Neval> . (36)

This second measure tests whether errors from approximating the mean, variances, and c*
might cancel—especially for particle smoothing—so that the resulting band differs from
the true exact one-scale band yet still attains the correct coverage. Note that, since we
As with the point estimator, we find that our RLI-based method is much faster,
even though it requires recomputation at each iteration step of the optimizer, whereas
the particle smoother reuses a single set of particles. Under suitable regularity condi-
tions on Py, this advantage is largely model-agnostic: model complexity is handled in
the integration, while the optimization concerns only the strictly increasing, continu-
ously differentiable coverage function. Consistent with this regularity, the errors for both

metrics—convergence in ¢* and in achieved coverage converge at virtually the same rate.

3.2 Implementing Predictive Inference

We address predictive inference under parameter uncertainty by taking the prediction
set to be the union of plug-in bands across a confidence set for 6, and we compute
this union via a series of constrained optimization problems. In simulation, the plug-in
band undercovers, whereas the prediction band union attains the target coverage, albeit

somewhat conservatively.
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3.2.1 Prediction Band Union

We define the prediction band union and establish a coverage lower bound, which we use
to calibrate the union to a target coverage level under parameter uncertainty. We then
derive a series of small, smooth constrained optimization problems that standard solvers
can handle, and use them to compute the projected prediction band union.

Predictive inference for the full latent path zg.7, i.e., acknowledging parameter un-
certainty, as discussed in Section 2.4, is difficult for two reasons: First, for nonlinear
state-space models, the joint law of (zg.1,#) is usually not available in closed form, so in
a frequentist setting without assumed prior over 6, one cannot integrate out # to con-
struct the exact prediction set under parameter uncertainty or to evaluate its coverage
analytically. Second, the property (9) imposes only one scalar coverage constraint on a
high-dimensional set, so the target prediction set (as in the plug-in case) is not unique.

It is therefore natural to start from the plug-in construction and then augment it
to account for parameter uncertainty. In this paper, we construct a prediction set under
parameter uncertainty by taking the union of plug-in prediction bands across a confidence
set for #. For a target level o, our building blocks are plug-in bands with conditional

coverage 1 — a?°. Define

Xﬁ,a(ﬂo:T) = U X&(Qa Yo-), (37)
€05 (yo:7)

where ©.(yo.r) is a (1 — 7)-level confidence set for 6.
The prediction band union admits a simple lower bound in the predictive inference
problem: if the plug-in bands attain conditional level 1 — & for every fixed 6 and the

confidence set (:)v(yO;T) has (finite-sample) level 1 — ~, then for any 6 € ©,

R?YGMTGX’ @mﬂ) 38
=P} (ﬁo:T € X;{a (Yor) .0 € év(QO:T))

+ P (:Bo;T € X5 (yor) 0 ¢ év(?JO:T)>
>PXY (xoT € Xya (yor) .0 € © (yOT))

(38)

(39)

(40)

(41)

HX,Y <x0T € Xa (0, yo.r) 0 € @'y(QO:T)> (42)
B o (@3
(44)

(45)

40

41

{06, (yo.7) }P%TWOT (%T S X (0 Yo: T) |y0 T)] 43
—(1-a) P (0 € O,(yor))
=(1—-a)(1—7)

20Since the target of the final prediction set is a, we write & for the coverage level used inside the
plug-in bands to keep the two coverages distinct.

44

45
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The key step (42) uses that, on the event {6 € é’y(?/O:T)}7 the plug-in band X5(6, yo.r) is

a subset of the union )A(;J & (yo.r). Hence, choosing & and  such that
1-a)(1-7)=1-0a (46)

ensures that )A(;J 5 (yo.r) has predictive coverage at least 1 —«. The bound holds uniformly
over § € © provided both ingredients (plug-in conditional validity and ©., validity) hold
uniformly; in practice, (:)7 is typically only asymptotically valid, so (45) holds with an
o(1) remainder as T — oo.

In this paper, we take (;)ﬂ, from likelihood-ratio test (LR) inversion, which enjoys
classic frequentist validity asymptotically. The confidence set (:)y can be derived by
inverting the likelihood-ratio test (LR):

O, (yor) = {0+ og L6 yorr) = log L(8 | yor) — 3321, | (47)

where L(0 | yo.r) is the likelihood of @ given the data as defined in (6), 0 is the MLE,
and x7 ;. is the (1 —)-quantile of x? for p = dim(#). This set enjoys classic frequentist
validity asymptotically

i, n B (0 € 0,00)) =1 )
where the probability is with respect to repeated sampling of the full time series {z, y;} 1,
at fixed T'. Specifically, Gilch, Reich and Wilms (2025) show consistency and asymptotic
normality of  even when the likelihood L(0 | yo.r) must be approximated. 2!

The calibration (46) tends to be conservative: Empirically, values of 7 larger than
those solving (1—a&)(1—7) = 1—« often still yield near-nominal predictive coverage. The
conservatism stems from our proof technique: we (i) discard the branch {6 ¢ ©. (yo.r)}
and (ii) replace the union by the single plug-in set at 6, each step shrinking the probability
event (see the two inequalities Eqgs. (41)-(42)). Tightening the prediction band union
would require a sharper lower bound—one that retains more of the discarded mass or
exploits dependence between events—or an alternative set construction that achieves the
predictive guarantee with less slack.

Even with the conservative lower bound (45), we still must choose (&,7), and this
choice directly affects the size of the PU band. In fact, & and v are underdetermined
because any pair satisfying (46) attains the same lower bound, yet different pairs yield
different prediction band unions with different sizes. For a given sample, a principled

choice is to search for the tuple (&, y), which minimizes a size functional of the prediction

21Recall that this is the case here, as the likelihood forms a similar integral over the missing observations
as the mean and the plug-in coverage. Gilch et al. (2025) approximate the likelihood with the RLI
algorithm, a simpler version of RQI.
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band union (e.g., total width) subject to the condition (46):
o2, 570 (X sl 49)

st. 1—-a)(l—-v)=1—-« (50)

Practically, rearranging the constraint to solve for v(a&) = 1 — 1=2 reduces the calibration
to a one-dimensional search in &, which may be solved by Bisection or Newton methods
(recall that we assumed sufficient regularity before). Monotonicity is clear in the extremes:
decreasing & (more conservative plug-in bands) or decreasing v (larger confidence set)
both enlarge Xid(yO;T), but the optimal trade-off is data dependent.

If evaluating the full frontier (&, y(&)) is computationally expensive, we consider two

types of heuristics: First, a simple and effective heuristic is the square-root split,
l-a=1-v=+Vl1-a, (51)

which balances the two uncertainty sources so that neither dominates. When prior or
empirical intuition about the relative tail behavior of 0 versus the plug-in bands for xg.r
is available, one may “tilt” the split accordingly by assigning a larger share of the product
1 — « to the relatively better-behaved component (e.g., heavier latent tails = increase
1 —~, lighten 1 — &, and vice versa).

Our second heuristic exploits the fact that, in large sample, parameter uncertainty
shrinks while the model-induced uncertainty in zg.r does not vanish to minimize the
width of the prediction band union. For fixed 7, the LR confidence set éy(?Jo:T) shrinks
as T' — oco. Hence, the asymptotically optimal target is to let v — 0 and & — a: this
minimizes the contribution of parameter uncertainty while keeping the plug-in coverage
at the desired level. In finite samples, v = 0 would produce an uninformative LR set,
but asymptotically 6 — 6 and éy(?JO:T) collapses, so the set union becomes minimal.

In practice, we therefore seek a schedule (7" | 0 such that the confidence sets still
contract. Along the calibration frontier (1 — &(7"))(1 — (7)) =1 — «, set

1—&(T):1_—a = a(T)taas~(T)]O0. (52)
1—~(T)
A sufficient condition for contraction is that the LR “radius” obeys X; —(T) = o(T), be-
cause standard quadratic expansion of the log-likelihood yields a diameter for ©.(p)(yo.r)
of order Op(1 /X12,71_7(T)/T)~ Using the tail behavior x3 , ., ~ 2log(1/v) as v | 0, any
choice ¥(T) = T~* with k > 0 gives

2
Xp7 1_7(T) 2]€ 10g T
= \/ = — 0, (53)
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so the LR confidence sets shrink despite the decreasing confidence level.??

~

In particular, under such a schedule, ©,)(yo.r) = {0} and &(T) — «. Con-

sequently, the prediction band union

XWU(TL&(T)(yOfT) = U Xae) (0, yo:r) (54)
HEGW(T)(QO:T)

converges to the plug-in band at the true parameter and target level, i.e., to Xa(e, Yo.T)-

With the theoretical setup in place, we now turn to a fully deterministic implementa-
tion of the prediction band union. We show that the smallest hyperrectangle enclosing the
union can be obtained via a series of constrained optimization problems. These problems
are straightforward to solve—even for complex, nonlinear state-space models—because
they can leverage our RQI algorithm from the previous section.

As an (T +1)-dimensional set, the prediction band union X 5a(yor) generally has an
irregular shape: each X5(0,yo.7) is a band, i.e., a hyperrectangle in the space of possible
missing sequences, R+ but their union need not be. We therefore report its minimal

axis-aligned (hyperrectangular) envelope

A

XDi(or) = {x: z <ay <7 for all ¢}, (55)
where
Ty = max Iy, (56)
ZGXE/J,@(Z/O:T)
T, = min  xy. (57)

.’EGX,':/J’&(yo;T)

This introduces a projection error (see Footnote 11) but yields a computable object that
preserves simultaneous, pathwise interpretation. Operationally, computing this projec-
tion reduces to 27" scalar extremizations, which we cast as smooth constrained programs
next.

In particular, we compute each envelope boundary 7, x; as the solution of a smooth

22Pathwise nesting éw(T) c é,\/(T/) for all T > T' is not guaranteed, because increasing T tightens
curvature (shrinking sets) while decreasing (T') loosens the threshold (expanding sets). The schedule
above ensures asymptotic contraction (diameter o,(1)), which suffices for our limit statements.
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constrained program.?® For the upper boundary, this is

B w0 vce (58)
st. x € By(c), (59)
Py (By(c) | yor) =1 — @, (60)
0 € 0, (yor)- (61)

The lower boundary x; is obtained by replacing “max” with “min”. Note that, we are
not maximizing x; over a precomputed union; rather, we allow any € RT*! but enforce
that x belongs to some plug-in band of level 1 — & and that the corresponding parameter
lies in ©.(yo.r). This makes the feasible set of (58)-(61) exactly the (implicit) union, so
the optimizer attains the true envelope boundary. Furthermore, constraint (63) hides two
tasks: (a) evaluating 62 (an integral of the form (15), handled via our RQI approximation)
and (b) obtaining the point path z;. If the point path is the mean sequence, both pieces
use the same RLI machinery; if it is the MAP, i.e., the most likely sequence, the problem
becomes bilevel (outer (x,c,#), inner MAP), which is generally hard but practical with
software that handles implicit functions, e.g., CasADi (Andersson et al., 2019).

Otherwise, the resulting program is a small, smooth nonlinear optimization that
off-the-shelf solvers handle well, e.g., with automatic differentiation (AD); in practice,
supplying analytic/AD gradients and using warm starts across ¢ yields stable, fast solves.
In particular, even for complex state-space models, our RQI algorithm delivers all re-
quired components (point estimator, variance, and plug-in coverage) quickly and with
high accuracy.

We can refine the constrained optimization problem further to

Ty = xtER,?Elﬂ%i(()ﬂE@ T (62)
st —g < - Tt < 5, (63)
By (By(e)lyor) < 1 (64)
log L (6]yo:r) > log L(B|yo.r) — %x;l_v (65)

By refining the constraints in (62)-(65), we reduce the decision dimension of the max-

23Forming XE&(yO;T) by iterating over plug-in bands on a grid of ©.,(yo.7) C R is ineffective. First,
év(yO;T) contains infinitely many 6, so any discretization risks missing the true extremizers. Second, the
width and location of X&(ﬁ, Yo.7) can be non-monotone in #; extremal coordinates max x; or min z; may
ommﬂtmmﬂmeMQmnpﬁonmemmmhwoﬂx.AhmmhwoMymmmﬂwmbmummmdWMM
a full interior net must be exponentially fine in p to be safe—prohibitively costly and still vulnerable to

gaps.
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imization from T + p + 224 to 2 + p, i.e., we no longer optimize over the full sequence
x, only its t-th component z;, along with ¢ and 6. Likewise, the number of inequality
constraints drops from 27 4 4 to just 4, since we no longer need to enforce band bounds
for all off-target periods of the candidate sequence.

We justify the simplifications in (63)-(65) one by one. For (63), we have replaced the
abstract condition for x to be included in the plug-in prediction band By(c) by its concrete
bounds. Note that due to the rectangular shape of By(c), the maximization in dimension
(i.e. period) t is independent of all other periods. Hence, we can discard all other periods
x,, s # t, of the candidate sequence x and it suffices to constrain it in the ¢-th dimension.?
Second, because the objective is to increase x;, the optimizer will “push” the band outward
by enlarging ¢.? Without a coverage cap, ¢ (and thus Z;) would “blow up”. It therefore
suffices to impose an upper bound on the plug-in coverage, P, O:T‘yO:T(Be(C) | yor) < 1—a
(analogously with 1 — « if one calibrates directly to the product frontier). The lower
bound is immaterial in this maximization since the optimal c is the largest feasible one.
Importantly, this also holds when minimizing, i.e., for computing the lower bound z;
since the plug-in prediction bands are designed to be symmetric. Finally, the LR-based
confidence set is defined by the inequality log L(0 | yo.r) > log L(é | yor) — %Xz,l—v'
We can enforce this directly for each candidate (zy, ¢, ) during optimization, avoiding
the separate computation (or discretization) of éy(yO;T) while retaining exactly the same
feasible 6.

Leaving aside any issues with the time series setting and occasional observations, a
possible alternative to our approach could be bootstrap methods, which may be used to
resample the data and construct a prediction band union based on the recomputed para-
meters. However, this approach requires truncating the empirical parameter distribution
somewhere and it is a priori unclear how one would compute the resulting quantiles over

the set of plug-in prediction bands (for the recomputed parameters).

3.2.2 Simulation Experiments

Finally, we confirm the validity and necessity of our approach in a simulation experiment
for a linear Gaussian model by demonstrating that the plug-in prediction band indeed
undercovers, and then showing that the projected prediction band union does satisfy our

coverage target.

24T 4+ 1 coordinates for the candidate path z, p for the parameter vector 6, and 1 for the scale c.

25This coordinate-wise reduction fails for non-rectangular plug-in sets (e.g., highest-density regions).

26Reich and Judd (2020) follow a similar approach to obtain confidence bands for functions of coun-
terfactual parameters by maximizing an implicitly defined likelihood using MPEC.
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We study a linear-Gaussian state-space model

Y = Bxy+mi, (66)

Ty = pry_1 + &, (67)
with n, "= (0,07) and & A0, 02). We take 2o ~ N(0,02/(1 — p?)) (stationary
initialization).

In this setting, Kalman filter/smoother (KF/KS) yields the exact point path (we
use the mean) and pointwise standard deviations, and provides the exact log-likelihood
L(0 | yo.r) for 6 = (p,0,). This removes approximation error so we can isolate the effect
of parameter uncertainty. In more complex models, the methods from Section 3.1 replace
KF/KS. One quantity still requires an outer search: the plug-in band scale ¢* cannot be
read off from KF marginals, so we compute it by monotone root-finding of (18) using our
RQI algorithm.

We vary two uncertain parameters, p and o,, fixing 8 = 1 and o, = 0.5. The
parameter space is © = [0.6,0.99] x [0.1, 2], with truth (p,o,) = (0.9,0.5). For T" = 20
(short but informative; 7' = 10 is too small and 7" = 100 is computationally heavy) we
draw S = 100 datasets.

Figure 4: Mean path and the projected prediction band union for the latent state {z;};2,
in one simulated dataset

21 -
—— Mean sequence at @
Plug-in prediction band
14 Projected prediction band union
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Notes: We plot the mean sequence {Z; }+2, (solid blue line) as well as the plug-in prediction band (shaded
blue) and the projected band union (shaded orange) for the linear-Gaussian model defined in Eqgs. (66)
and (67). The mean sequence and the plug-in prediction band union are computed using the maximum
likelihood estimator 6. The plug-in prediction band satisfies 95% plug-in coverage as defined in Eq. (8),
the prediction band union satisfies predictive coverage as defined in Eq. (45) with & = v ~ 0.0253.
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For each dataset y((f% we perform three steps: (i) estimate 6(s) by maximizing the

KF likelihood over ©; (ii) compute the plug-in prediction band at level 1 — & by solving
(18) (mean path + KF variances); (iii) compute the projected PU band by solving (62)
2T times (upper/lower for each t). Unless stated otherwise we use the square-root split
to target 1 — a = 0.95,

l—a=1-y=v1—a~09747 (a =~ 0.0253), (68)

and we also report a conservative variant with & = vy = 0.05.

We find that the plug-in band undercovers, whereas the projected prediction band
union attains the coverage goal but is somewhat conservative. Concretely, the plug-in
band covers the true sequence x4 in 85 out of S = 100 simulations. By contrast, the
projected prediction band union covers xf4¢ in 99 simulations. These results show two
things: first, relying solely on the plug-in band is inappropriate because it underestimates
the uncertainty about the missing sequence inherent in the data; second, the projected
prediction band union corrects this undercoverage but overshoots, yielding conservative
sets. In Figure 4, to visualize full predictive inference in this example, we plot the mean
estimator and the plug-in prediction band, both evaluated at the maximum likelihood

estimator é, as well as the projected prediction band union for one simulated data set.

4 Estimation of Prices in a Steel-Trade Model

To demonstrate the applicability of our methods in real examples, we use it to infer
a sequence of occasionally observed prices in the steel trading model of Hall and Rust
(2021). There, a steel-trading company buys items on the wholesale market, and re-
sells them to retail customers. The inventory management of the company is assumed
to implement the solution to a dynamic profit optimization problem, which trades-off
stockpile available for sale against cost minimization (attempting to “buy low”).
Importantly, the data set is limited to the steel trading company’s transactions,
and is not augmented by data from the wholesale market. Therefore, it contains only
occasional observations of the wholesale price p;, namely for periods where the firm made
an actual purchase; additionally, this observability pattern is endogenous: The company
is less likely to stock-up their inventory when the price is high (but might be forced to do
so if running low), and vice versa. The model admits a state-space representation as in
(1)-(2), allowing us to apply the methods we developed in the previous section to estimate
the band of “reasonable” wholesale prices for the non-observed periods, given the data:
we report the mean path and the projected prediction band union, thereby delivering
full predictive inference for p; under both model-induced randomness and parameter

uncertainty.
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Figure 5: Mean path for the wholesale price sequence {p;}?%}

TBD: Projected prediction band union analogous to Flgure 4.
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Notes: We estimate the series of wholesale prices p; for 3/4-inch steel plate in our steel-trade data set
and using the reduced-form model presented in Hall and Rust (2021). Red dots indicate observations of
p¢, the solid blue line represents the mean path for p;. The upper panel plots the evolution for periods
t=0,...,130, the lower panel for 7' = 130, ..., 260.

TBD: Boundaries of the projected prediction band union at the coverage level o = 0.95.
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5 Conclusion

This paper develops a comprehensive frequentist framework for inference fro missing
observations in time series data using nonlinear state-space models. We propose the
Recursive Quadrature and Interpolation (RQI) algorithm, a deterministic alternative to
simulation-based methods, which achieves polynomial convergence rates for the high-
dimensional integrals that arise in estimation. By alternating quadrature and inter-
polation for recursive representations of these integrals, RQI efficiently computes point
estimators and plug-in prediction bands, naturally incorporating occasional observations
whenever available. In simulation experiments, RQI consistently outperforms particle
smoothers in both speed and accuracy.

We further extend inference to account for parameter uncertainty by introducing
the prediction band union, the union of plug-in prediction bands across a confidence set
for the model parameters. This construction yields predictive coverage in the frequentist
sense without relying on priors or resampling and can be implemented as a sequence of
constrained optimization problems. In simulations, the prediction band union corrects
the undercoverage inherent in plug-in procedures and provides finite-sample coverage that
meets or slightly exceeds nominal levels.

Beyond its immediate contributions, our framework opens several promising aven-
ues for future research. Methodologically, extending the RQI and PU constructions to
models with multiple latent states will be important for macroeconomic and financial ap-
plications. Further, our methods allows the analysis of how additional parameters affect
uncertainty about the latent states—a question that, in contrast to parameter estima-
tion, has so far been unexplored in the frequentist framework and may yield insights into
the role of parameter dimensionality in state-space model inference. More broadly, the
methods developed here enable researchers to estimate and empirically apply dynamic
models that were previously infeasible due to computational or data limitations, thereby
expanding the empirical frontier of structural work in fields such as macroeconomics,

labor, industrial organization, and finance.
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ONLINE APPENDIX

More details on particle filtering and RLI

Simulation based methods

A popular way to approximate high-dimensional integrals such as that in the likelihood
(6) is Monte Carlo simulation. These methods are not directly affected by the curse of
dimensionality, so their asymptotic accuracy is essentially independent of the integral’s

dimension (7'+ 1). The basic idea is to draw N.,, samples zo.p from Py*” and average:

Neual
P€yo;T|l’0:T (yO:T |$z) (69)
1

1
Neval i

L (Olyor) = / Pey():ThO:T (Yo.r|Tor) APy (zo1) =
ST+1

Regardless of the dimension of zy.7, and under mild regularity conditions, the simulation

error satisfies

Nm;al
1 lxn. 0. lxa. —
L (¢9|y0:T) — N Z PHyOT\ 0:T (?/0:T|$i) _ \/V&YHO'T [Payo.ﬂ 0:T (yo:T|$i)} Op <Nevil/2>
eva. Z:l

(70)

as Nypg — 00.
However, sampling directly from P,;*” is generally nontrivial. Consequently, methods
such as particle filtering or Gibbs sampling do not draw from the full joint distribution at

once, but instead iteratively sample from conditional distributions. In particle filtering,

one uses the following recursion for t = 0,...,T to obtain samples z¢ ~ Py (z¢|yo.t):
Po(ailyoas) = | P Goleies) Po orcsluoecs) dois (71)
Sz
Py (yt|y0:t—1) = / Py (ytlwt) Py ($t|y0:t—1) dz, (72)

Py (ytlxt) Py ($t|y0:t—1)
P, 4) = .
o (wlyo) Py (Y| yo:t—1)

(73)

In particular, the filtering algorithm simultaneously computes the conditional densities

for the data, Py (y¢|yo.t—1), yielding the likelihood as

L(Olyor) = [ [ Po (welyor) - (74)

t=0

Regardless of implementation-specific optimizations, simulation attains only the Monte

Carlo rate (70). In practice, this means that in order to gain one additional digit of accur-



acy, one typically requires about 100 times more evaluations of the integrand. Moreover,
because the error bound is probabilistic, the achieved accuracy is not even guaranteed
(even though probability bounds on the maximum error can be stated); similarly, the
estimate of the integral itself is subject to simulation noise. Therefore, simulation-based
approaches are mainly justified if either function evaluations are extremely cheap, or if
the researcher is satisfied with a very coarse (and noisy) approximation of the object of
interested. However, this is not the case for many relevant applications in economics
and finance. For example, many models feature optimizing agents, where the transition
functions Wy, ®y from Equations (1)-(2)—and hence the transition density P, —are not
available in closed form; then, obtaining a sample z; requires solving the agents’ optimiz-
ation problems numerically, making function evaluations expensive, and thus motivating
methods with faster convergence. Also, many solvers that are regularly employed to
optimize the likelihood strongly benefit from noise-free objectives; in the context of es-
timation, this issue is distinctive if either data is scarce or if the likelihood cannot strongly
discriminate multiple sets of parameter values due to the way the model is formulated
(sometimes referred to as “poor identification”), and thus the maximum of the likelihood
is ambiguous and thus hard to pinpoint. Both issues give deterministic approximation

methods a potential edge over simulation in practical applications.

Recursive Likelihood Integration (RLI)

On the other hand, the RLI algorithm addresses both challenges: the slow convergence
of simulation and the incorporation of occasional observations of x;. It does so via two
components: (i) a recursive formulation of the integral and (ii) a per-step combination of

numerical integration and interpolation. The recursion is

fl(wq) = / Py (ye, @y | Ye1, we-1) fria (30), ddy (75)
Sz
for t =0,...,7,%" so that the final step ¢ = 1 yields the likelihood:

0 : T
L(Olyog) = { 110 Hr0 €T (76)

fY else.

To handle occasional observations, Gilch et al. (2025) modify (75) by replacing the in-
tegral over x; with evaluation at the observed x;. For multivariate states with partial
observations, the integral is restricted to the unobserved components. See Gilch et al.
(2025) for details.

Given the recursive formulation (75), RLI approximates the conditional integral at

2TThis mirrors the classic filtering recursion in (71) but avoids computing Py (x; | y0.¢—1) as a ratio
with an additional integral in the denominator.



each step using a numerical integration rule. Unlike simulation-based methods, these
rules use a fixed set of nodes x; and weights w; tailored to weighted one-dimensional

integrals,

f(@)w(z)dr ~ Z wi f (), (77)

so there is a one-to-one correspondence between the choice of rule (z;,w;) and the pair
(A, w) specifying the domain and weight function.

Reich (2018) propose a change of variables for the integration variable Z; which,
intuitively, shifts the integration nodes toward the mass of the integrand.?® Concretely,

we seek a map & such that 7, = {(z, z,_1) and

Py (yt, ft\yt—b ﬂUt—l) =0t (f(zt, $t—1), xt—l)w(zt)- (79)

This reparametrizes the integral in terms of z; and factorizes the conditional density of

T, into a function g; times the quadrature weight w. We then approximate f?(x; ;) by

ft€<xt71) = /S gt (f(Zty Itfl)xtfl)w<zt)a ferl <€<Zt7 xtfl))ﬁ(zt)dzt (80)
~ ]Zte(ﬂﬁtq) = th (£<Zt,i>-77t71)a xtfl)ﬁe-i-l (f(zt,i, xtfl))7€(zt,i)- (81)

At this point, a direct application of the change-of-variables scheme can cause an
exponential growth in function evaluations. Because ¢ depends on x;_1, the argument
z;_1 of f? also enters ftﬁl. One step earlier, f? is evaluated at z;,_; = &(2t-1,5, Tt—2), SO
the dependence of ffﬂ on x;_1 becomes a dependence on x; 5. Consequently, at time
t + 1 we must evaluate J;t9+1 for all combinations (z;,2¢-1;), ¢, = 1,..., Ng. Iterating
this argument shows that, under the naive scheme, the number of evaluations of ff grows
as Né fort=0,...,T, ie., computational cost increases exponentially in 7.

RLI solves this issue by using interpolation: we interpolate the function ff using a

281t is suboptimal to approximate f; naively by dividing and multiplying by a weighting function and
then applying a rule designed for A = S, :

N,
Py (yt, Telyr—1, we—1) flir (@) o . L Po (v eilye1, we—1) £ (Ee)
@) = /S S s~ 3w e
x i=1 ?

The mismatch between the integrand and the weight w induces large errors because nodes ;; cluster
where w is large. With small Ng, the integrand is evaluated mainly where it is small. Although this error
vanishes asymptotically, it can be substantial unless Ng is large. (This mirrors the need for importance
sampling when the support of a function and the sampling density have little overlap.)



fixed number, Nz, of interpolation nodes
fl(we) = TV (f) (@) (82)

=T | 20§ )smin) i (80 )) € Ga) | (mn)  (83)

The function ff can be evaluated for any value x;_; = x without triggering new eval-
uations of ffﬂ and therefore avoids the exponential “blow-up” of function evaluations.
Constructing ff requires N,q = NgNz evaluations of the integrand: for each of the Nz
interpolation nodes, the integrand has to be evaluated Ng times. Finally, replacing f?

by f¢ in the recursion (75) yields the likelihood approximation

flg (5130) if Zo S 7-,

1Y else.

LNea Olyo.r) = (84)

Numerical integration and interpolation has the advantage that they can achieve
polynomial converging approximation errors, O(NC;TQ) and O(N; ') respectively. Reich
(2018) shows that the RLI recursion (83), i.e., alternating interpolation and integration
to approximate the sequence of nested integrals { f?}L, preserves these polynomial con-
vergence rates. For fixed T, it yields following approximation error rate:

L(Olyor) = LY (Olyor)| = O (No2) (85)

eval

TQTI

where r = .
rQETI
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