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Abstract

Economic datasets often suffer from missing observations, with key variables

such as prices, firm expenses, or volatilities being observed only occasionally or not

at all. We provide a novel comprehensive methodology to estimate the missing

observations in time-series data when the occasionally observed variable is modeled

as the (partly or fully) latent state in a nonlinear state-space model. First, we

construct plug-in estimators for the latent state, treating the model parameters as

known. To approximate the necessary integrals efficiently, we develop a recursive

quadrature and interpolation (RQI) algorithm, achieving polynomial convergence

rates for the involved integrals. Second, we incorporate estimation uncertainty

about the model parameters by augmenting the plug-in estimators using a confid-

ence set for the parameters—without assumptions about their prior distribution.

We demonstrate the efficiency of RQI in extensive Monte Carlo studies, bench-

marking it against a popular particle smoothing algorithm, and illustrate the full

methodology by estimating a sequence of endogenously unobserved prices using

data from a steel-trading firm and a dynamic profit-maximization model.
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Hundrieser, Farzad Saidi, Jan Scherer, Frank Schorfheide, Ole Wilms, and all seminar participants at
the University of Bonn and the University of Pennsylvania for helpful comments. Alexandros Gilch
acknowledges funding by the DFG through CRC TR 224 (Project C03).

�University of Bonn, Department of Economics, Adenauerallee 24-26, 53113 Bonn, Germany. E-mail:
alexandros.gilch@uni-bonn.de

�Tsumcor Research AG. E-mail: gregor.reich@tsumcor.ch

https://alexandros-gilch.github.io/uploads/JMP_Gilch.pdf


1 Introduction

Time series data is often incomplete with some variables being observed only occasionally

or even never. This lack of information makes policy analysis with dynamic economic

models difficult, since the reaction of each variable to a policy change depends on the full

joint trajectory of all variables. Such observability (or missing data) problems arise across

many fields: In marketing or empirical IO, the price of a product is often only available

in periods when the product is actually purchased (Erdem, Keane and Sun (1999), Hall

and Rust (2021)). To assess how a tax reduction would affect demand for this product,

one must first infer what the actual prices might have been. In finance, the unobserved

variables often include abstract quantities such as the time-varying volatility of asset

returns (Shephard (1997), Kim, Shephard and Chib (1998)), and a common objective is

to compare these volatilities across firms, industries and countries.

Nonlinear, non-Gaussian state-space models are a popular tool for the analysis of

such time series data. They achieve this by specifying structural equations that jointly

describe the evolution of the observed variables and a fully or partly unobserved (latent)

state. While linear-Gaussian models are used traditionally for this purpose because they

are tractable via the Kalman filter and smoother, they impose restrictive linear assump-

tions on the relationship between observed variables, latent states, and shocks. Hence,

across many fields researchers have developed nonlinear state-space models, which rep-

resent economic mechanisms more explicitly.1

Once a state-space model is specified, it is natural to use it to estimate the missing

observations in the data; this task is also referred to as “smoothing” in the state-space

literature. However, this is challenging in two dimensions: computationally, because

plug-in point estimators and prediction bands are costly to compute; existing methods

rely on simulation-based approximations that converge only at the probabilistic Monte

Carlo rate. And methodologically, because inference must account for uncertainty about

the model parameters; existing approaches address it in a Bayesian framework but not

every researcher has access to reliable priors in their particular setting. Furthermore, the

latent state is often not truly latent: in many applications, the data include observations

for some periods—what we call “occasional observations”—while it is missing in others.

Although some existing methods can accommodate occasional observations in mixed-

frequency settings, the systematic treatment of estimation with occasional observations

remains relatively unexplored.

In this paper, we provide a comprehensive framework for the frequentist estimation

of missing observations, addressing both challenges. First, we develop a fast, determin-

1Influential applications were pioneered in dynamic IO (Pakes (1986), Rust (1987) ), labor economics
(Keane and Wolpin (1994), Keane and Wolpin (1997)), marketing (Erdem and Keane (1996), Dubé,
Hitsch and Manchanda (2005)), macroeconomics (Fernández-Villaverde and Rubio-Ramı́rez (2007),
Aruoba, Bocola and Schorfheide (2017) ), and finance (Bansal and Yaron (2004), Wachter (2013)).
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istic algorithm for the approximation of plug-in estimators, providing a more efficient,

deterministic alternative to simulation-based methods. Second, we introduce a prediction

band union to augment the plug-in estimators with uncertainty about the model para-

meters and compute it as the solution to a constrained optimization problem. The two

contributions are complementary: plug-in bands undercover in small samples, which the

uncertainty-aware construction corrects, while the optimization routine repeatedly calls

the plug-in components and is computationally viable only because we can efficiently ap-

proximate these components. We include occasional observations seamlessly in both our

algorithm and our inference concept, making both flexible to use across many possible

applications, with or without occasional observations.

Our first contribution is to develop a recursive quadrature and interpolation (RQI)

algorithm for the numerically efficient computation of point estimators and plug-in pre-

diction bands. Computing the point estimates and prediction sets requires marginal-

izing over the missing observations—that is, evaluating a high-dimensional, generally

intractable integral whose dimension grows with the length of the time span between

observations. The integral arises from the joint conditional distribution of the missing

observations given the data, which includes both the fully observed variables and any

occasional observations of the latent variable. Note that we use a fixed parametrization

of the model to derive the conditional distribution—an assumption that we relax in our

second contribution.

Existing approaches such as particle smoothing draw samples from the joint distribu-

tion and use them both to approximate the integral and to estimate the latent states (see

Chopin and Papaspiliopoulos (2020) for a textbook treatment). These methods face two

limitations: (i) sampling-based integration converges slowly, making accurate approxim-

ation computationally expensive—especially when estimators must be recomputed many

times (e.g., computing volatility paths for a universe of stocks); and (ii) they do not fully

exploit occasional observations of the otherwise unobserved states. For instance, in the

pricing data case, prices are observed when purchases occur and should be used directly

in the estimation process.

Our recursive quadrature and interpolation (RQI) algorithm combines deterministic

quadrature and interpolation rules to approximate a recursive representation of the in-

tegrals efficiently. In doing so, we generalize the recursive likelihood integration (RLI)

algorithm (Reich (2018), Gilch et al. (2025)) to arbitrary integration domains and in-

tegrands. The RQI algorithm decomposes the full integral into a series of nested low-

dimensional integrals and approximates each of these by alternating numerical integration

and interpolation rules. The interpolation step allows us to exploit the fast convergence of

deterministic quadrature and interpolation methods, yielding approximation errors that

decay at a polynomial rate without incurring the curse of dimensionality. Moreover, the

RQI algorithm naturally incorporates occasional observations: whenever a latent state is
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observed, the corresponding recursion step collapses to a single density evaluation rather

than an integral.

The literature on estimating the latent state in state-space models has primar-

ily relied on linear approximations of nonlinear models, simulation-based methods, or

deterministic schemes developed for likelihood evaluation rather than for inference on

the latent state itself. Linearizing the model yields closed-form expressions for these

integrals—obtainable via Kalman filtering and smoothing—but can introduce large errors

and often defeats the purpose of a nonlinear specification (Fernandez-Villaverde, Rubio-

Ramirez and Santos, 2006). Simulation-based methods retain the full nonlinear model and

sample missing states from model-implied conditional distributions—e.g., particle filter-

ing/smoothing (Fernández-Villaverde and Rubio-Ramı́rez (2007), Herbst and Schorfheide

(2014), Blevins (2015), Chopin and Papaspiliopoulos (2020)), Gibbs sampling (Norets

(2009)) and the GHK simulator (Keane (1994))—to obtain Monte Carlo approximations

of the integrals. However, such approximations achieve only the probabilistic Monte

Carlo error rate, thus there is a trade-off between cheap but rough or computationally

expensive but accurate approximations.

In contrast, deterministic numerical schemes based on efficient quadrature and inter-

polation have been developed to approximate the model likelihood, a high-dimensional

integral with a similar structure (Gilch et al., 2025; Reich, 2018), but not yet to compute

the integrals required for inference on the latent state.2 Our RQI algorithm fills this

gap in the literature by providing integral approximations that are both highly accurate

and computationally efficient. Because the approximation is deterministic, it avoids the

randomness of simulation-based methods and therefore eliminates the risk of poor results

due to unfavorable draws.

Our second contribution is to develop a frequentist predictive inference concept that

accounts for two sources of uncertainty about the missing observations: randomness

specified by the model, i.e., in the form of random shocks, and parameter uncertainty

arising from the fact that model parameters must be estimated from the same data. In

particular, we formulate inference exactly for the missing observations, using occasional

observations to directly inform these estimates.

A key methodological challenge in inference for the missing sequence is the need to

incorporate parameter uncertainty arising from the estimation of the structural model.

The structural model is parametrized, and the parameter (vector) θ is typically estimated

from the same data used to infer the latent path. Näıve plug-in inference for the missing

sequence therefore understates total uncertainty since it simply plugs in the parameter

estimate without acknowledging its estimation uncertainty. Bayesian inference addresses

2Kitagawa (1987) also approximates these integrals using numerical integration and interpolation,
but only for linear non-Gaussian models and without explicitly controlling the coverage of the prediction
bands.
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this issue by imposing distributional assumptions through a prior on the parameters.

Frequentist parametric bootstrap methods resample the data but face typical challenges

when drawing from time series and computing quantiles of high-dimensional objects.

We avoid distributional assumptions and adopt a fully frequentist predictive inference

perspective. Specifically, we define a prediction band union as the union of plug-in bands

over a confidence set for θ, establish a coverage lower bound for this union, and calibrate

it to achieve a target frequentist coverage under parameter uncertainty. Computationally,

we show that the (projected) prediction band union can be obtained by solving a series of

constrained optimization problems that standard solvers handle reliably. Note that this

approach is practical only because in our first contribution we showed that the plug-in

components (point path, variance, and coverage) are computed efficiently with RQI.

The literature deals with estimation uncertainty either by ignoring it, by using

Bayesian methods, or by implementing a parametric bootstrap: When samples are large,

parameter uncertainty may be negligible, which motivates plug-in procedures that condi-

tion on estimated parameters and account only for model-implied randomness (Kitagawa

(1987), Durbin and Koopman (2012)). However, with too little data parameter uncer-

tainty cannot be ignored. Bayesian approaches integrate over a prior on the parameters

(Hamilton (1986), Quenneville and Singh (2000), Durbin (2002)), though the choice of

prior is often debated and some researchers prefer not to impose such distributional

assumptions. In contrast, frequentist predictive inference (Cox (1975) and Barndorff-

Nielsen and Cox (1996), see also Geisser (1993) and Young and Smith (2005) for text-

book treatments) addresses prediction under parameter uncertainty; however, the typical

application for predictive inference is the estimation of future observations given past

data.

Therefore, our second contribution is to formulate predictive inference for missing

observations and provide frequentist prediction bands under parameter uncertainty. To

our knowledge, we are the first to construct such simultaneous prediction bands for gen-

eral nonlinear state-space models that directly satisfy a predictive-inference criterion in

the frequentist sense. Related works by Pfeffermann and Tiller (2005) and Rodŕıguez

and Ruiz (2012) use bootstrap methods to compute per-period prediction mean squared

errors, but do not deliver (simultaneous) prediction bands for the entire missing sequence

and are limited to linear-Gaussian models.

We demonstrate numerical efficiency of the RQI algorithm and verify that our predic-

tion bands attain their nominal coverage in simulation studies, and show their feasibility

in an actual application using real data from a steel-trading firm (Hall and Rust, 2021).

First, we carry out simulation exercises to verify the theoretical error convergence

rates using a standard stochastic volatility model with simulated data. For this purpose

we compute the relative approximation error of the respective integrals as a function of the

total number of function evaluations, Ntotal. We show that the relative approximation
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error of the mean integral decays with a polynomial rate, O(N−4
total), when using the

RQI algorithm with cubic splines and Gaussian quadrature, compared to the standard

probabilistic Monte Carlo rate, Op(N
−1/2
total ), when using a forward-filtering/backward-

smoothing particle smoother. The same holds true for the coverage integral and the scale

of the plug-in prediction band.

Second, we demonstrate that our proposed prediction band union satisfies the pre-

dictive coverage criterion. Simulating data from a linear-Gaussian model, we find that

for a target coverage of 95% the prediction band union covers the true sequence in 99% of

all simulations, i.e., overcovers, whereas the plug-in prediction band ignoring parameter

uncertainty undercovers, covering in only 85% of all simulations.

Third, we prove applicability of our method in a real-world application, analyzing

data from a steel-trading firm that buys on the wholesale market and resells on the retail

market. The dataset contains only occasional observations of the wholesale price pt,

specifically in periods when the firm restocks. Using the dynamic profit-maximization

model presented in Hall and Rust (2021), and applying the methods developed in this

paper, we estimate the wholesale price sequence in non-observed periods. We report the

mean path and the projected prediction band union, thereby delivering full predictive

inference for pt under both model-induced randomness and parameter uncertainty.

The remainder of this paper is organized as follows: Section 2 introduces the formal

setup and states the problem; in particular, Section 2.4 introduces the concepts from

predictive inference that are fundamental to our method. Section 3 states our contribu-

tions: Section 3.1 develops the recursive quadrature and interpolation (RQI) algorithm

for plug-in point estimators and prediction bands and reports its convergence rates in

simulation experiments. Section 3.2 defines the prediction band union, derives a lower

bound on its coverage and demonstrates its empirical coverage in simulation experiments.

Section 4 reports the results from an application of our method to the steel trading model

of HR. Section 5 concludes.

2 Framework

This section lays out the setting on which our contribution builds. Section 2.1 form-

ally defines the state-space model that encodes the economic environment; Section 2.2

then discusses data availability and formalizes occasional observations. Next, Section 2.3

details maximum-likelihood estimation via RLI, providing the foundation for the compu-

tational methods we develop in Section 3.1. Finally, Section 2.4 presents our framework

for inference on the missing sequence, specifying the objects computed in Sections 3.1

and 3.2.
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2.1 State-Space Models

In this paper, we consider a discrete-time stochastic process {Yt, Xt}, with measurement

variable yt and state variable xt following a parametric Markov transition density PX,Y
θ .

This density may not be available in closed form but rather it is induced by a structural

economic model.

The transition density of the state variables, PX,Y
θ , typically arises from a functional

relation between xt and yt, in our case motivated by a formal economic model:

yt = Ψθ(xt, ηt) ηt
i.i.d.∼ P η

θ (1)

xt = Φθ(xt−1, εt) εt
i.i.d.∼ P ε

θ (2)

where ηt and εt are random errors or shocks. Their distributions P η
θ , P

ε
θ and the functions

Ψθ,Φθ are known up to a finite-dimensional parameter vector θ ∈ Θ. They imply domains

Sx ⊂ Rdx and Sy ⊂ Rdy for the variables xt and yt respectively. Together, the model

equations and the distributions of the random errors induce a probability law for the

transition from (yt−1, xt−1) to (yt, xt) satisfying a Markov property. We further assume

that this law admits a transition density PX,Y
θ , which therefore factorizes as

PX,Y
θ (yt, xt|yt−1, xt−1) = P

Y |X
θ (yt|xt)P

X
θ (xt|xt−1) , (3)

i.e., the always observed variable yt depends on the past only through its dependence on

the state xt, and the series {xt} itself also satisfies a Markov property.

Both yt and xt may be vectors, so Ψθ and Φθ are, in general, multivariate functions.

However, our analysis focuses on the case of one-dimensional xt (dx = 1): This is because

we are interested in estimating xt for all t, and then visualizing those estimates, which

ultimately amounts to reporting each component of xt separately. In practice, this means

we must marginalize all other components of xt not under consideration anyway. For the

sake of the argument, it is therefore convenient to write the model and all associated

densities in terms of the one-dimensional xt of interest; however, the theory extends

naturally to the multivariate case.

Crucially, we allow for nonlinear functions and non-Gaussian densities. “Nonlinear”

may include cases where the functions are defined implicitly as the solution to a (per-

period) optimization problem. A large literature addresses how to solve such problems, so

we assume that these state-dependent solutions—and hence the functions Φθ and Ψθ—are

either available in closed form or can be approximated to high accuracy.
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2.2 Missing Data

In many state-space models, yt is treated as the measurement variable which is always

observed by the researcher, whereas xt is latent. In this paper, we consider a more

general setting in which the researcher observes the full measurement series {yt}Tt=0 but,

in addition, may observe xt for some periods t ∈ T̄ ⊆ {0, . . . , T}; note that this includes

the case of no observations, i.e., T̄ = ∅. The observation process itself may depend on

the model variables. However, not accounting for such endogeneity can bias inference

based on the combined data {{xt}t∈T̄ , {yt}Tt=0}. Therefore, the structural model must

impose assumptions on either exogeneity of the observation process or a functional form

governing its endogeneity.

We can formalize the endogeneity of occasional observations using a missingness

indicator mt ∈ {0, 1} that records whether xt is present in the dataset: mt = 0 if t ∈ T̄
and mt = 1 otherwise. The indicator mt is observed in every period, thus, the full data

set is {{xt}t∈T̄ , {yt,mt}Tt=0}. We assume the joint process (yt, xt,mt) is Markov. For

simplicity, mt depends only on current (yt, xt). Because missingness is a researcher-side

issue, all agents observe the full data, implying

PM,X,Y

θ̃
(mt, xt, yt|mt−1, yt−1, xt−1) = pMθm(mt|xt, yt)P

X,Y
θ (yt, xt|yt−1, xt−1), (4)

i.e., mt doesn’t affect the economic variables xt, yt, and PM,X,Y

θ̃
is parametrized by θ̃ =

(θm, θ), where θm parametrizes pMθm and θ is the model parameter (vector) as before.

The missingness mechanism pMθm(mt|xt, yt) formalizes when and with what probab-

ility the researcher observes xt. Its key feature is whether it depends on xt: if it does

not, we call the mechanism exogenous and the data missing-at-random (MAR), because

observation does not depend on the realized value;3 if it does depend on xt, we call

pMθm(mt|yt, xt) endogenous and the data not-missing-at-random (NMAR).4

For notational simplicity, we adopt two conventions for the remainder of the paper:

First, we set T̄ = ∅, i.e., xt is never observed, and we estimate the missing sequence

{xt}Tt=0 given the data {yt}Tt=0. In the case with occasional observations, all derivations

carry over verbatim by estimating {xt}t∈T̄ given {{xt}t∈T̄ , {yt}Tt=0}; this does not alter

the formal arguments, and our computational methods are designed to accommodate

occasional observations. Second, we treat the data as MAR. All results extend to NMAR

3 A prominent example for MAR data is mixed-frequency data, where time series are observed peri-
odically but at different frequencies. This is common in macroeconomic applications with monthly,
quarterly, or annual series, or with series aggregated over several periods and then reported at a lower
frequency. For instance, the high-frequency series yt

T
t=0 might be monthly, while xt

T
t=0 is recorded annu-

ally. Then the observation set is T̄ = 0, 12, 24, . . . , T , entirely independent of the values taken by xt
T
t=0

because the mechanism depends only on t and is therefore exogenous.
4 An example of NMAR data involves prices: in scanner data, prices are often observed only when the

corresponding product is purchased Erdem, Keane and Sun (1999). Because purchase decisions depend
directly on price, price observation is endogenous. A similar setting with wholesale steel prices is studied
in Hall and Rust (2021) and motivates our analysis in Section 4.
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settings by including mt as an additional observed variable and treating (mt, yt) as the

full set of observations. In both cases, see Gilch et al. (2025) for details on modeling the

missing mechanism for latent states in state-space models.

Under non-observation of xt in some or all periods, allowing nonlinearity and/or non-

Gaussianity in the economics creates two challenges: First, key objects of interest—such

as the likelihood—typically lack closed-form expressions. We show how to approximate

these objects using recursive likelihood integration (RLI): in Section 2.3 for the likelihood

itself, and in Section 3 for inference over {xt}Tt=0. Second, the densities P
X
θ and P

Y |X
θ often

cannot be derived in closed form from the transition functions and error distributions.

In the appendix, we explain how to handle this within the existing RLI framework and

how the same approach carries over to the algorithms proposed in this paper.

2.3 Parameter Estimation using Recursive Likelihood Integra-

tion

To use state-space models, e.g., for policy experiments or to evaluate counterfactuals,

one typically needs to estimate the parameters θ of the model first. A popular approach

is maximum likelihood estimation; however, for models other than the linear-Gaussian,

the likelihood forms an integral over the latent sequence that is not available in closed

form. Moreover, because estimation requires evaluating the likelihood for many candidate

values of θ, a fast and accurate approximation of this integral is essential.

The recursive likelihood integration (RLI) algorithm provides such an approximation

by applying deterministic numerical integration and interpolation methods. Furthermore,

being fully deterministic, it avoids issues related to noisy objective functions and their

optimization, which are inherent in some alternative approximation and estimation meth-

ods. Since the methods we develop in Section 3.1 build on similar ideas than RLI, we

consider it worthwhile to briefly outline them here.

Given a model (1)-(2) that admits probability densities for the data, we define the

likelihood of the parameter vector θ ∈ Θ ⊆ Rp as the density of the data seen as function

of the parameter and use it for estimating θ. In the full-data case T̄ = 0, . . . , T , the

likelihood is the standard product of the period-wise densities,

L
(
θ|{xt, yt}Tt=0

)
= P x0:T ,y0:T

θ

(
{xt, yt}Tt=0

)
=

T∏
t=1

PX,Y
θ (yt, xt|yt−1, xt−1) . (5)

However, with xt only observed occasionally, the likelihood forms an integral over the
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missing observations:5

L (θ|y0:T ) = P y0:T
θ (y0:T ) = Ex0:T

[
P

y0:T |x0:T

θ (y0:T |x0:T )
]

=

∫
ST+1
x

PX,Y
θ (y0:T |x0:T ) dP

x0:T
θ (x0:T )

=

∫
ST+1
x

PX,Y
θ

(
{xt, yt}Tt=0

)
dx0:T

=

∫
ST+1
x

T∏
t=1

Pθ (yt, xt|yt−1, xt−1) dx0:T . (6)

Recall that Sx is the domain of xt in a single period, hence the domain for the sequence

x0:T is ST+1
x .

The likelihood integral is typically unavailable in closed form and must be approx-

imated. In particular for nonlinear models, the integral must be computed numerically

or by simulation. Although the integrand is a product of terms, the integral does not

factor, making approximation of the integral challenging: each Pθ (yt, xt|yt−1, xt−1) in-

volves two integration variables xt, xt−1; due to this pairwise entanglement the integral

has dimension (T + 1).

As a consequence, many practitioners use simulation-based integration methods.

However, Monte Carlo approximations have probabilistic error Op(N
−1/2
eval ), where Neval is

the number of evaluations of the model transition functions Ψθ,Φθ (cf. Eq. (1)-(2)), and

therefore require substantial computational effort for high accuracy. Furthermore, while

simulation methods can in principle be adapted to settings with occasional observations—

for instance, a particle method for mixed-frequency models (Schorfheide, Song and Yaron

(2018))—we are not aware of general implementations or formal treatments that system-

atically incorporate such observations. In this paper, we use particle smoothing as the

benchmark for simulation methods and provide further details in the Appendix.

Estimation requires repeatedly evaluating the data density at many candidate para-

meters, so speed is critical. This holds for likelihood-based estimation—where we search

for a maximizer by iterating over the parameter space—and for Bayesian estimation—

where we form the posterior by evaluating the likelihood at draws of θ from a prior or

proposal distribution. When optimization is challenging (e.g., due to a large or poorly

conditioned parameter space) or when the prior/proposal is difficult to sample from, these

computational demands are magnified.

Recursive likelihood integration (RLI) by Reich (2018) is a recursive algorithm that

approximates the likelihood efficiently and, as shown by Gilch et al. (2025), seamlessly

incorporates occasional observations. Its recursive structure decomposes the likelihood in-

5Recall that we assumed T̄ = ∅ for the rest of this paper, hence, no occasional observations of xt are
part of the dataset.
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tegral into T lower-dimensional—but nested—integrals. RLI approximates this sequence

of nested integrals by alternating numerical integration and interpolation. Importantly,

the approximation error can be controlled by utilizing fast-converging numerical integ-

ration and interpolation methods, yielding better convergence rates than related simula-

tion methods. 6 Additionally, the approximated function is deterministic and therefore

doesn’t suffer from simulation noise.

RLI is the basis for similar algorithms we develop in Section 3. We provide details

on its derivation and implementation in the Appendix.

2.4 Two Inference Frameworks for Missing Observations

We base inference for the missing sequence on the state-space model-induced law P
x0:T |y0:T
θ .

In Section 2.4.1, we treat the parameter as known, so plug-in inference accounts only for

model-induced randomness. However, θ is typically estimated from the same data y0:T

so plug-in estimates are subject to parameter uncertainty. In Section 2.4.2, we formalize

predictive inference as a frequentist framework for estimating the missing sequence under

parameter uncertainty. We

2.4.1 Plug-in Inference

When treating θ as known (or estimated with negligible uncertainty), inference on the

missing sequence x0:T is based on the conditional (smoothing) law

P
x0:T |y0:T
θ (x0:T | y0:T ) =

PX,Y
θ ({xt, yt}Tt=0)

Pθ(y0:T )
, (7)

i.e., the joint distribution of the latent states given the observed data y0:T ≡ {yt}Tt=0 under

the model. The law P
x0:T |y0:T
θ (· | y0:T ) quantifies how compatible each entire path x0:T

is with the realized finite sample y0:T ; different data would yield a different distribution

of paths. Because state and measurement equations contain random shocks, there is no

one-to-one mapping from y0:T to x0:T : even at a single time t, multiple state values are a

priori compatible with the same observation and with neighboring states. Conditioning

on y0:T assigns to each candidate value xt = x a conditional probability (mass/density),

and these assignments across all t and all paths make up P
x0:T |y0:T
θ (· | y0:T ). Since P x0:T |y0:T

θ

is high-dimensional,7 we summarize it through timewise functionals (e.g., mean, mode,

6To be concrete, the approximation error of the deterministic integration and interpolation methods
accumulates linearly with the time-series length T ; however we consider T to be fixed in this paper.(Gilch,
Reich and Wilms, 2025) show how to adjust RLI for T →∞ to also obtain asymptotically small approx-
imation errors.

7Note that while formally (T + 1)-dimensional, the Markov property of the underlying time series
implies typically fast decaying covariances between far away periods, hence the covariance matrix of

P
x0:T |y0:T

θ has near-zero entries far away from the diagonal and most of the mass of the distribution,
while technically high-dimensional, concentrates around a lower-dimensional subspace of R(T+1)
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and variances for xt) and through simultaneous plug-in prediction sets that constrain the

entire latent path. We call these sets “prediction sets” to be consistent with the predictive

inference setting we introduce later, which is based on the existing predictive inference

literature for out-of-sample inference.

Asymptotically, the distribution P
x0:T |y0:T
θ over the missing sequence does not con-

centrate on the realized sequence; instead, at any fixed time t the marginal smoothing

law converges to a limit distribution conditional on the infinite sample y0:∞. Recall that

we are in a time-series setting, so the asymptotic framework means letting the sample

length grow (T → ∞). Even with infinite data, the model-induced randomness at a

given period t does not vanish. Exactly as in finite samples, multiple state values remain

compatible with the observations and the neighboring states. This limit is still data-

dependent: it is a random measure determined by the realized y0:∞. Correspondingly,

features of the finite-sample smoothing distribution (mean, mode, quantiles, and plug-in

prediction sets) converge to the same features under P
x0:∞|y0:∞
θ ; in particular, the widths

of plug-in prediction sets converge rather than vanish.

Because the full joint conditional distribution P
x0:T |y0:T
θ over the possible paths is

high-dimensional, researchers typically report (i) a smoothed point path together with

(ii) a simultaneous plug-in prediction set to express model-induced uncertainty over the

missing sequence. For the former, we use either the mean x̄t := Eθ[Xt | Y0:T ] for all

t ∈ T̄ or the mode (MAP). The mean is the MMSE estimator under squared loss; the

MAP corresponds to a frequentist “mode” summary and is often easier to compute via

optimization.

For the latter, we seek a random set X̂α(θ, y0:T ) ⊂ S(T+1)
x such that it contains the

entire latent path with probability at least 1− α:

P
x0:T |y0:T
θ

(
x0:T ∈ X̂α(θ, y0:T )

∣∣ y0:T) ≥ 1− α. (8)

This condition enforces simultaneous (pathwise) coverage and is stronger than having

(1−α) pointwise intervals at each t. As (8) does not pin down a unique set, a construction

rule is required.

In Section 3.1.2 we define the one-scale class of prediction bands, which includes

many common prediction band constructions, and show how to compute the unique

exact plug-in prediction band in this class.

2.4.2 Predictive Inference

To include uncertainty from parameter estimation, we move to a frequentist framework

and define prediction sets using predictive inference, naturally augmenting the previous

plug-in prediction set.

The plug-in prediction set from the previous section is undercovers, whenever the
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parameter θ is estimated with error (typically from the same sample y0:T ). In some

applications this uncertainty is negligible—e.g., when θ is estimated from very large

and informative samples—so researchers sometimes forgo any correction (Durbin and

Koopman (2012)). In many time-series settings, however, samples are short (macro

data), or model dimensionality is large relative to the available information, so estimation

uncertainty in θ̂ remains material even for substantial T .

Two prominent remedies are Bayesian inference and parametric bootstrap methods.

The Bayesian route introduces a prior on θ and propagates posterior uncertainty about

θ into the law of the latent states; while principled, it requires prior choices that some

practitioners prefer to avoid. Some frequentist alternatives therefore rely on simulation-

based calibration: the parametric bootstrap re-generates the series {xt, yt}Tt=0 under the

fitted model, re-estimates θ, and uses the resulting empirical distribution of θ̂ to quantify

parameter uncertainty and fold it into smoothing or prediction sets (e.g. Pfeffermann and

Tiller, 2005; Rodriguez and Ruiz, 2009; Rodŕıguez and Ruiz, 2012).

We adopt a frequentist predictive framework (cf. Geisser (1993)) to incorporate para-

meter uncertainty but avoid any simulation. Usually, predictive inference is applied for

out-of-sample prediction, e.g., for estimating the next observation yT+1 given our data set

y0:T periods. In particular, it incorporates uncertainty of the parameter directly into its

predictions. We rephrase predictive inference to estimate the missing observations x0:T

given the data, utilizing the same intuition to account for parameter uncertainty.

For each level α ∈ (0, 1), a prediction set is a random set Sα (y0:T ) satisfying uniformly

for all possible parameters θ

lim inf
T→∞

inf
θ∈Θ

PX,Y
θ (x0:T ∈ Sα (y0:T )) ≥ 1− α. (9)

This probability is frequentist: imagine repeatedly generating full series y0:T and the

associated latent path x0:T from the model and recomputing the set Sα(y0:T ) each time.

Thus, coverage averages over the sampling of y0:T and the induced randomness in θ̂(y0:T ).
8

Unlike the plug-in case—where one reports a conditional distribution given y0:T un-

der a known parameter θ—we target unconditional predictive coverage, i.e., averaging

over repeated sampling of both x0:T and y0:T , to account for the randomness of θ̂(y0:T ).

Intuitively, conditioning on the realized y0:T removes sampling variability; as a result, the

parameter estimator θ̂(y0:T ) is fixed, and there is no residual uncertainty that Sα(y0:T )

can control for. With unknown parameters, an exact conditional target such as

Pθ

(
x0:T ∈ Sα(y0:T )

∣∣ y0:T ) = 1− α a.s. in y0:T (10)

is therefore generally unattainable when Sα(y0:T ) depends only on the observed data.

8In applications where per-time reporting is preferred, we later also consider simultaneous prediction
bands {Bt,α(Y )}Tt=0 as a common subclass of prediction sets.
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Condition (10) requires the set based on that y0:T to achieve 1 − α uniformly across

all possible θ; to “hedge” against unlikely (θ, y0:T ) combinations, one must inflate Sα

substantially—often to the point of being uninformative. 9

In principle one would derive the joint finite-sample law of (θ̂T , x0:T ) under repeated

sampling to calibrate Sα, but in state-space models this is typically intractable. Therefore,

practically, Sα(y0:T ) will be constructed from the estimator θ̂T = θ̂(y0:T ) together with an

explicit adjustment for its sampling uncertainty, e.g., using a confidence set for θ̂.

Taking asymptotics in T has two consequences for interpretation: First, as already

emphasized in the plug-in setting, smoothing uncertainty reflects model-induced random-

ness. Therefore, even with abundant data, the predictive set does not shrink to a singleton

(the set only containing the true sequence). Second, with unknown θ, the coverage guar-

antee we target is approximate: in practice, Sα(y0:T ) attains its nominal level only as

T grows. This is the usual tension between the theoretical properties of large-sample

frequentist inference and the finite-sample demands of the researcher’s reality.

Finally, a natural goal is that the prediction set under parameter certainty con-

verges, in large samples, to the plug-in set we defined in the previous subsection; yet,

such convergence is not automatic. As T → ∞, parameter uncertainty vanishes under

standard regularity, so the true θ is effectively known and we can compute the plug-in set

evaluated at the true parameter S⋆
α(y0:T ; θ). That target is stronger than the uncondi-

tional predictive target because it delivers conditional coverage given y0:T . The question,

then, is whether the prediction set we construct for the finite-sample, unknown-θ case

converges to this plug-in (true-θ) solution as T grows. This would be desirable: even

though exact conditional coverage is unattainable in finite samples, it would be recovered

in the limit. However, the unconditional predictive target admits multiple asymptotic

solutions; by definition these need only satisfy unconditional coverage in the limit. The

plug-in (true-θ) set is one such solution—since it is also unconditionally valid—but it is

not the only one. Therefore, the predictive inference construction must explicitly encode

a limit preference, selecting the plug-in (true-θ) limit among the admissible unconditional

limits. Without such a tie-breaker, a predictive procedure may converge to a different

valid limit that is typically more conservative than the plug-in set.

In Section 3.2 we develop and implement a constrained optimization algorithm,

whose solution is a prediction set achieving predictive inference as defined in (9) under

standard regularity. Moreover, our construction is designed to deliver the desired asymp-

totic, i.e., our prediction set converges asymptotically to the exact plug-in prediction set

defined in the previous subsection.

9In distribution-free settings this tension is formalized by impossibility results for exact conditional
coverage (e.g., in conformal prediction, Vovk (2012)). Parametric structure relaxes but does not eliminate
the issue: demanding exact conditional validity typically yields very large sets unless the model admits
special pivots or ancillary reductions.
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3 Numerically Efficient Frequentist Inference for Miss-

ing Observations

We contribute along two fronts for state-space models with missing data. First, we

develop an recursive quadrature and interpolation (RQI) algorithm for fast, accurate ap-

proximation of plug-in point estimators and prediction bands providing a computationally

cheaper deterministic alternative to simulation-based methods. Second, we construct a

prediction band union—which explicitly incorporates parameter uncertainty—by solv-

ing a sequence of constrained optimization problems. These pieces are complementary:

plug-in bands undercover in small samples, which the uncertainty-aware bands correct,

while the optimization routine repeatedly calls the plug-in bands and is therefore only

computationally feasible because the latter can be approximated efficiently

3.1 Numerical Approximation for Plug-in Inference

Existing approaches for computing point estimators and plug-in prediction bands deliver

only Monte-Carlo accuracy O(N
−1/2
eval ) and struggle to incorporate occasional observations.

Wald-type bands with Bonferroni corrections are an ad hoc alternative but are typically

over-conservative. We develop RLI-based deterministic algorithms that compute plug-in

point estimators and prediction bands with polynomial error convergence rates, enabling

tight, well-calibrated bands; a stochastic-volatility study on simulated data illustrates

these gains.

3.1.1 Plug-in Point Estimators

The two most common candidates for point estimators of the missing sequence are the

mode and the mean of the conditional distribution P
x0:T |y0:T
θ . The mode,

x̂0:T = argmaxx0:T∈ST+1
x

P
x0:T |y0:T
θ (x0:T |y0:T ) (11)

= argmaxx0:T∈ST+1
x

PX,Y
θ ({xt, yt}Tt=0)

Pθ(y0:T )
(12)

= argmaxx0:T∈ST+1
x

∏
t∈T̄

Pθ (xt, yt|xt−1, yt−1) , (13)

is the most likely sequence given the data: Analogous to the maximum-likelihood estim-

ator, it has the highest density among all possible sequences, and is therefore standard in

the literature. Computationally, the mode is the solution to a single (T +1)-dimensional

maximization problem, where the objective function requires only computing the joint

density of all variables, because the denominator is a scaling factor; hence, no integration
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is needed. 10

Alternatively, the mean of the conditional density,

x̄0:T (θ, y0:T ) ≡ Eθ[x0:T | y0:T ] , (14)

is often considered, particularly in Bayesian estimation. For each t ∈ T̄ , we have a

separate integral

x̄t (θ, y0:T ) ≡
∫
ST+1
x

x̃t Pθ(x̃0:T | y0:T ) dx̃0:T (15)

which integrates xt against the conditional density over the full latent path. As for the

likelihood, the integral is usually not available in closed form and the integrand cannot

be decomposed easily to break up the integral: hence, numerical approximation of the

integral is both necessary and computationally challenging.

Particle smoothing methods can be used for to approximate x̄0:T (θ, y0:T ) but they

have two problems: First, their asymptotic error rate is the usual Monte Carlo error rate,

Op(N
−1/2
eval ), where Neval is the number of evaluations of the model transition functions

Ψθ,Φθ (cf. Eq. (1)-(2)), so a faster algorithm is desirable. Second, we are not aware of

particle smoothing methods that natively incorporate occasional observations in settings

with possibly endogenous observation mechanism into their sampling scheme (see Gilch

et al. (2025) for a review of this literature).

3.1.2 Plug-in Prediction Bands

Conditional prediction bands given the data and a fixed parameter are not unique, so we

focus on the one-scale class, where a single scale c determines the band and the exact

plug-in set is uniquely identified by a monotone coverage equation. Computing that

coverage entails a high-dimensional integral—akin to those for the likelihood and the

mean—so simulation yields only O(N
−1/2
eval ) accuracy and handles occasional observations

poorly, while ad hoc Wald bands avoid integration but only deliver point-wise inference.

This motivates a fast, high-accuracy algorithm for evaluating coverage and recovering the

exact plug-in band.

In Section 2.4.1, we defined the plug-in prediction set as a random set based on a

fixed parameter θ and the data y0:T such that it has coverage 1−α w.r.t. the conditional

distribution of the missing sequence. However, this definition is too general to deliver a

unique prediction set for a given α. Therefore, we restrict the space of admissible sets to

well-defined classes in which the exact plug-in set is unique (under mild monotonicity and

10In this paper, we do not make a formal statement about the complexity of the former, but we
argue that numerical solvers typically find the maximum fairly quickly. In particular when the relevant
densities are differentiable, which is usually the case because economic models are often defined using
smooth functions.
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continuity assumptions on the models transition densities). The literature has focused on

two such classes, each admitting a unique set at level α: the one-scale class of prediction

bands (Montiel Olea and Plagborg-Møller, 2018) and highest density regions (HDRs).

Both can be implemented by imposing additional constraints on the plug-in set X̂. In

this paper, we focus on the former as it delivers easier-to-visualize prediction bands.

In general, prediction bands Bθ are hyperrectangles in the space of missing sequences

S(T+1)
x , meaning they can be written as a tensor product of bounded intervals

Bθ (θ, y0:T ) ≡×
t/∈T̄

[
¯
x̃t (θ, y0:T ) , ¯̃xt (θ, y0:T )] . (16)

This allows for a one-to-one projection of such sets into the standard visualization as

a one-dimensional band along the time axis. Hence, prediction bands don’t exhibit a

projection error, which is usually arising when projecting high-dimensional sets into such

a visualization.11 The one-scale class of prediction bands consists of prediction bands,

hence exploiting the lack of a projection error, and additionally constrains the possible

intervals to scale jointly, making it is easy to find the unique exact set in this class:

Bθ(c) = Bθ(c, θ, y0:T ) ≡×
t/∈T̄

[̊xt − c σt, x̊t + c σt] , (17)

where x̊ is one of the point estimators defined earlier, σt =
√

Varθ[xt | y0:T ] is the con-

ditional standard deviation of xt given the data, and c is the common scale applied

simultaneously to all t /∈ T̄ . In the following, we drop the dependence on θ and y0:T

to simplify notation. Montiel Olea and Plagborg-Møller (2018) define this class for con-

ducting simultaneous inference on multiple parameters and impulse response functions of

VARs—a computationally less demanding, though less general, setting—and argue that

this class in fact includes many commonly used prediction bands in empirical work.

Importantly, under suitable assumptions on PX,Y
θ ,12 the coverage of bands in the

one-scale class of prediction bands is strictly increasing and continuous in c. Hence there

is a unique c∗(α) such that Bθ(c
∗(α)) attains exact coverage 1 − α with respect to the

conditional distribution of the missing sequence. In particular, the prediction band with

11The projection error is the difference in probability coverage between an T -dimensional set A ⊂ RT

and its projection into a one-dimensional representation Ā. By the latter we mean a series of (one-
dimensional) intervals [

¯
at, āt] s.t.

¯
at = mina∈A at and āt = maxa∈A at. In particular in the time series

context, formally high-dimensional sets such as A are usually represented through such projections, i.e.,
through a “band” with upper bound āt and lower bound

¯
at for each t. However, this representation, as

T -dimensional set, is larger than A and therefore incures the projection error e(A,P ) = P (Ā)−P (A) ≥ 0
for any probability measure on RT . By considering only prediction bands as admissible prediction sets,
this projection error becomes 0 for all candidate prediction sets and, hence, the visualization of the
prediction set coincides with true set and actually achieves correct coverage.

12This includes: no plateaus, no point masses.
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exact coverage 1− α is the unique solution to the root-finding problem

R(c) ≡ P
x0:T |y0:T
θ (x0:T ∈ Bθ(c) | y0:T )− (1− α) = 0, (18)

with solution c∗(α). As the coverage function R is strictly increasing and continuous,13

any numerical solver can find c∗(α) fairly quickly if we can evaluate the coverage of Bθ(c).

In practice, we bracket c on [0, cmax] so that coverage at cmax definitely exceeds 1 − α,

then use bisection or Newton.

However, similar to the likelihood and the mean, the coverage poses a computational

challenge, because it is a (T + 1)-dimensional integral over the hyperrectangle,

P
x0:T |y0:T
θ (x0:T ∈ Bθ(c) | y0:T ) =

∫
Bθ(c)

P
x0:T |y0:T
θ (x̃0:T | y0:T ) dx̃0:T , (19)

which generally does not decompose into one-dimensional integrals for the same reason

as the likelihood in Section 2.3.

Existing approaches either compute the integral using smoothed particles or avoid

it altogether, in which case they are not valid for simultaneous coverage. With particle

smoothing, a plug-in prediction band can be implemented, but the approximation error

decays at the same (slow) rate, Op

(
N

−1/2
eval

)
, as for the plug-in mean. Other approaches

do not compute the coverage at all but rely on Wald-type bands: these fall within our

one-scale class, yet the scale c is chosen as the critical value of a Normal or t-distribution.

Concretely, they set x̊ to the mean and σt to the (approximate) marginal standard devi-

ation, then take c as the univariate critical value—thereby ignoring the joint dependence

that simultaneous coverage must account for. This works if the model is genuinely close

to linear and Gaussian, but when the model is far from linear-Gaussian such ad hoc

choices can be very inaccurate. Even when a linear-Gaussian approximation seems reas-

onable, this approach only yields pointwise prediction bands, whereas we are interested

in simultaneous inference. Adjusting these to be simultaneous, e.g., via Bonferroni, tends

to be overly conservative (Montiel Olea and Plagborg-Møller, 2018).

In the following section, we show how to evaluate (19) deterministically via a RQI

algorithm, based on the concepts of Section 2.3, that also handles occasional observations.

3.1.3 Recursive Quadrature and Interpolation

To approximate the integrals (15) and (19) needed for the point estimator and the plug-in

prediction band respectively we develop a recursive quadrature and interpolation (RQI)

algorithm. While both integrals can be computed using a particle smoother, the RQI

algorithm achieves much faster convergence rates compared to the usual probabilistic

13Under suitable assumptions on Pθ; e.g., no plateaus on ∂Bθ(c) and σt > 0 for all t /∈ T̄ . See also
Footnote 12.
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Monte Carlo rate. In particular, this makes the repeated computation of plug-in estim-

ators needed in Section 3.2 much more feasible.

Similar to the recursive likelihood integration (RLI) algorithm discussed in Section

2.3 and the Appendix, RQI consists of two components: A recursive formulation of the

involved integrals and a numerically efficient approximation of each recursion step using

alternating quadrature and interpolation rules. RQI generalizes RLI in two aspects:

First, we allow more general integrands, extending the applicability of the algorithm to

the computation of the expectation of any integrable function gt(xt−1, xt), whereas RLI

only does gt(xt−1, xt) = 1, i.e., the likelihood. Second, we allow more general integration

domains such as hyperrectangles, i.e. prediction bands, whereas RLI is designed for

integrals over the full domain.

We start by defining the recursion for the integral over a general integrand
∏T

t=1 g
θ
t (x̃t, xt−1).

For all t = 0, . . . , T − 1, we define the function ft:

f θ
t (xt−1) =

∫
Sx

gθt (x̃t, xt−1)Pθ(yt, x̃t | yt−1, xt−1) f
θ
t+1(x̃t) dx̃t. (20)

The recursion exploits the conditional structure of the state-space model to evaluate

the integral one dimension at a time. Because the integrand for xt is the conditional

distribution of xt given xt−1, the result of integrating over xt is itself a function of xt−1.

Hence, in the next step, this function becomes part of the integrand for the integral over

xt−1.

We start this recursion at T with

f θ
T (xt−1) =

∫
Sx

gθt (x̃T , xT−1)Pθ(yT , x̃T | yT−1, xT−1) dx̃T , (21)

because there is no state xT+1 in our data set. Iterating backwards, we obtain

∫
ST+1
x

T∏
t=1

gθt (x̃t, xt−1)Pθ(x̃0:T | y0:T ) dx̃0:T =

f θ
1 (x0), if 0 ∈ T̄ ,

f θ
0 , else.

(22)

Note that the final step of the recursion depends on whether x0 is observed. Similarly,

whenever a state xt is observed, the corresponding integration collapses to a simple eval-

uation at the observed value.

To obtain the mean for a given period t′ /∈ T̄ , i.e., the integral Eθ[xt′ | y0:T ], we pick

the integrands

gθ,t
′

t (x̃t, xt−1) =

x̃t, if t = t′,

1, else.
(23)
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for each t = 0, ..., T . We obtain the entire mean path by repeating the computation of (21)

with the corresponding gθ,t
′

t for each t′ ∈ T̄ . Note that choosing a different gθ,t
′

t delivers

other moments of the smoothing distribution, e.g., via gθ,t
′

t (x̃t, xt−1) = x̃2
t if t = t′ and 1

otherwise for the second moment (and thus the variance), and gθ,t
′

t (x̃t, xt−1) = x̃t xt−1 if

t = t′ and 1 otherwise for the autocovariance of the two consecutive states xt′−1 and xt′ .

This becomes relevant when constructing confidence bands based on the variance of xt′

for each t′ ∈ T̄ . However, while any function depending only on two consecutive states

can be handled in this way, further adjustments are needed for more general moments

and functionals, which we leave for future research.

To compute the coverage integral (19) for plug-in prediction bands, we also use an

recursive representation of the integral, this time adjusting the integration bounds (rather

than the integrand) to

f θ
t (xt−1) =

∫ āt

¯
at

Pθ(yt, x̃t | yt−1, xt−1) f
θ
t+1(x̃t) dx̃t. (24)

Recall that we defined the bounds of the one-scale class in Section 3.1.2 as
¯
at = x̊t − c σt

and āt = x̊t + c σt. As before, the integral is obtained at the final recursion step,

P̂
x0:T |y0:T ,Neval

θ

(
x0:T ∈ Bθ

(
c
)
| y0:T

)
=

f θ
1 (x0), if x0 ∈ T̄ ,

f θ
0 , else.

(25)

Given this algorithm to compute the coverage of plug-in prediction bands, determ-

ining the correct band in the one-scale class for a given prediction level α reduces to a

single root-finding problem over the scale c of Bθ, where the solution c∗ satisfies

P
x0:T |y0:T
θ

(
x0:T ∈ Bθ

(
c∗(α)

)
| y0:T

)
− (1− α) = 0. (26)

Solving this is straightforward because the coverage is monotonically increasing and con-

tinuous in c (provided P
x0:T |y0:T
θ has no point masses), so there is a unique root that

standard methods (e.g., bisection or Newton) can find quickly.

Given the recursive formulations (20) and (24), the recursive quadrature and inter-

polation (RQI) algorithm approximates the full integral by integrating and then interpol-

ating each ft sequentially, starting from t = T . First, RQI approximates the conditional

integral f θ
t (xt−1) at a fixed set of interpolation nodes xt−1 = xt−1,i using a numerical

integration rule. Next, it approximates the full function f θ
t by interpolation from the

computed values f θ
t (xt−1,i). This procedure is analogous to the recursive likelihood in-

tegration (RLI) algorithm discussed in Section 2.3 and in more detail in the Appendix.

Recall thatNeval denotes the number of evaluations of the integrand gθt′(x̃t, xt−1)Pθ(yt, x̃t |
yt−1, xt−1) or Pθ(yt, x̃t | yt−1, xt−1), respectively. In practice, this usually corresponds
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to evaluating the model transition functions Ψθ and Φθ (cf. Eqs. (1)–(2)). For RQI,

Neval includes evaluations required for both numerical integration NQ and interpola-

tion NI . In particle filtering and smoothing, Neval counts the evaluations per forward-

filtering/backward-smoothing step and is thus analogous to the total number of particles;

error rates for particle methods are likewise expressed in terms of this number.14

To evaluate the accuracy of RQI relative to particle methods, we compute the ap-

proximation error as a function of the number of function evaluations, Neval, required to

compute the approximation: ∣∣∣I(g)− Î(g)
∣∣∣ = O(h(Neval)), (27)

where I(g) is the integral over a function g, Î(f) is its approximation and h(Neval) in-

dicates how quickly the approximation error vanishes as Neval→∞. For different ap-

proximation algorithms, this function varies and ususally depends on whether and how

often g is continuously differentiable. For simulation methods, such as the forward-

filtering/backward-smoothing particle filter, we have the traditional Monte Carlo rate

h(Neval) = N
−1/2
eval . Note that this rate is probabilistic, hence holds only on average, but

on the other hand doesn’t require differentiability of g.

The main advantage of RQI over simulation-based methods is that it leverages

fast-converging numerical quadrature and interpolation rules in each recursion step,

and that the full approximation inherits their convergence rate. Our convergence ana-

lysis relies on the assumption that the integrands gθt′(x̃t, xt−1)Pθ(yt, x̃t | yt−1, xt−1) and

Pθ(yt, x̃t | yt−1, xt−1) are r-times continuously differentiable in x̃t. In particular, f θ
t+1(x̃t)

is then also r-times differentiable. For gt this is immediate in our use cases; for Pθ, it

typically follows from the differentiability of the model transition functions and therefore

depends on the specific model specification. Given this assumption, we can apply numer-

ical integration and interpolation rules designed for r-smooth functions to approximate

the lower-dimensional ft with rates O(N−r
Q ) and O(N−r

I ), respectively. Following the

arguments in Reich (2018) and Gilch, Reich and Wilms (2025), the approximation error

does not accumulate across recursion steps. Consequently, the full approximation retains

the same fast convergence rate both for the conditional mean,15

max
t=0,...,T

∣∣∣x̄t − x̄Neval
t

∣∣∣ = O
(
N−r

eval

)
, (28)

14In contrast, the total computational effort Ntotal is the number of function evaluations required to
compute the full object (e.g., the likelihood, mean sequence, or prediction band coverage). It scales
linearly with Neval, although the multiplicative constant may depend nonlinearly on T .

15We treat T as fixed, reflecting the empirical setting in which a researcher has a dataset of length T
and performs inference for that particular sample. Accordingly, we omit all T -dependence in the reported
convergence rates. For the stated rates, it does not matter whether we write Neval or Ntotal, since the
proportionality constant is absorbed by Landau-O notation.
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and for the coverage integral,

∣∣P x0:T |y0:T
θ

(
x0:T ∈ Bθ

(
c
)
| y0:T

)
− ˆ

P
x0:T |y0:T
θ

(
x0:T ∈ Bθ

(
c
)
| y0:T

)∣∣ = O
(
N−r

eval

)
. (29)

Moreover, if P
x0:T |y0:T
θ is differentiable, replacing the coverage integral by its RQI

approximation is unproblematic: the root ĉ∗ of the approximate equation converges to

the true root c∗ at the same rate as the coverage approximation in (29). In particular,

ĉ∗ → c∗ at rate O
(
N−r

eval

)
, (30)

so the combination of a fast-converging coverage approximation and a simple root search

yields plug-in bands with exact coverage 1− α faster than particle smoothing methods.

To summarize, under sufficient regularity of the joint conditional distribution P
x0:T |y0:T
θ ,

we can provide fast-converging approximation algorithms for both the mean and the ex-

act plug-in prediction band, whose convergence rates significantly improve over existing

methods based on simulation.

3.1.4 Numerical Analysis: Stochastic Volatility Model

We demonstrate the numerical performance of our RQI approximation for both the mean

and the plug-in prediction band for the volatility series xt in the stochastic-volatility

model. We show that the relative approximation error of the mean integral decays much

faster under the RQI algorithm than under the FFBS particle smoother. The same holds

true for the plug-in prediction band, despite its computation involving a root-finding

problem.

Stochastic volatility models are a central tool in financial econometrics and serve

as a natural test case for assessing estimation methods. We benchmark the numerical

performance of our RLI-based approach against standard simulation-based methods and

confirm the expected computational speed-ups predicted by our theoretical results.

We consider the simplest version of a stochastic volatility model with one observed

variable (e.g., an asset return series) and one unobserved variable, the time-varying and

serially correlated volatility xt. Its state-measurement equations are

yt = µ+ ext/2ηt, (31)

xt = ρ xt−1 + εt, (32)

with ηt
i.i.d.∼ N (0, σ2

y) and εt
i.i.d.∼ N (0, σ2

x). With parameter vector θ = (µ, ρ, σy, σx),

this stochastic volatility model is a straightforward instance of the state-space setup in

Equations (1)-(2), with fully tractable P η
θ , P

ε
θ ,Ψθ, and Φθ. The transition densities are

available in closed form. A key feature of the model is time-varying volatility, which
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captures periods of high vs. low uncertainty in the data. It does so continuously, with ρ

governing the persistence of high- and low-volatility regimes, thereby avoiding the more

restrictive regime-switching approach with a discrete number of clearly separated regimes.

Obviously, this is a bare-bones specification, but countless richer versions exist, in-

cluding additional explanatory variables, (seasonal) trends, and so forth. However, the

main complication is already present here: the latent state enters the measurement equa-

tion highly nonlinearly, so linearization-based approximations can quickly deviate from

the true dynamics. Consequently, there is a large literature on estimating stochastic

volatility models, with a strong focus on particle methods.

Recall that the primary objective of our algorithm is to reduce the number of function

evaluations needed to compute the mean or the prediction band. In elaborate structural

economic models, the functions Ψθ and Φθ can both be expensive (e.g., if they require

solving an optimization problem or evaluating an expectation). Since, in macro models,

the transition equation for the latent state xt, i.e., Φθ, usually contains these complex

components, we take the number of evaluations of Φθ as our measure of computational

effort, Neval.
16 This is consistent with our convergence-rate derivations for the RQI al-

gorithm and the particle smoother: in the former, Ψθ and Φθ (or the corresponding

densities) are always needed synchronously; in the latter, Φθ is required in both filtering

and smoothing, implying the rate Op(N
−1/2
eval ) but with different constants.17 In this sec-

tion, we use a Stochastic Volatility model with inexpensive densities, and report cost in

function evaluations so the metric carries over to more complex settings.

We use the relative approximation error to display how well each algorithm approx-

imates the true solution for a given total number of function evaluations, Ntotal. For a

functional I(g), e.g., the mean or the coverage integral or the root c∗ scaling the exact

plug-in prediction band, and an approximation ÎNtotal
(g) using Ntotal evaluations of g,

define

e(I(g), Ntotal) ≡

∣∣∣∣∣I(g)− ÎNtotal
(g)

I(g)

∣∣∣∣∣ . (33)

The relative error can be read as “digits of accuracy where it matters,” rather than simply

counting decimals. In our setting, the true value I(g) is usually not available in closed

form. Therefore, in our implementation we use a high-Ntotal run of the RQI algorithm to

obtain a near-exact benchmark for I(g) and substitute this benchmark into the formula

above.

We report the approximation error against Ntotal to visualize the actual computa-

16We treat additional overhead from setting up the algorithm as a fixed cost that becomes negligible
both for large models and with efficient implementations. If Ψθ is the dominant cost in a given application,
we define Neval analogously as the number of evaluations of Ψθ.

17If Ψθ is the dominant cost in a given application, then smoothing is less costly because no new
evaluations of Ψθ are needed in the backwards smoothing step.
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tional effort needed to achieve a target accuracy. This is necessary because the Ntotal

is proportional to Neval for both the RQI algorithm and Particle smoothing, but with

different proportionality constants. Hence, the actual Ntotal needed to reach the target

accuracy does not only depend on Neval but also on this linear constant. However, we

can still compare our empirical rates with the theoretical ones, because these different

constants effectively only imply an earlier or later start of the asymptotic error whereas

the slope is the same.

Figure 1 reports relative approximation errors for the plug-in mean path computed

by our RQI algorithm and by a basic FFBS particle smoother. We focus on plug-in

means (true θ, no parameter uncertainty) and consider two horizons, T ∈ {10, 100}.
The former is representative of settings with frequent occasional observations (e.g., short

gaps), while the latter matches macro/financial series at quarterly or annual frequency.

We simulate the full data—no real data in this subsection—, initializing it with draws

from the stationary distribution, and use S = 10 Monte Carlo replications to smooth the

reported rates (deterministic for RQI, but helpful for the probabilistic FFBS errors).

RQI uses Gaussian-Hermite quadrature for the integration steps and cubic splines

for interpolation. In this smooth model, Gaussian-Hermite can achieve near-exponential

convergence, while cubic splines achieve their nominal rate r = 4. Therefore, we keep

NQ practically fixed and increase NI to balance the two errors and approach the optimal

full rate (theoretically close to r = 4).18 As a baseline, we implement a standard FFBS

particle smoother following Chopin and Papaspiliopoulos (2020).

We compute approximations of each integral with increasing Neval (and, thus, Ntotal),

i.e., we use an increasing number of quadrature and interpolation nodes for the RQI

method and an increasing number of particles for FFBS. To obtain the full mean sequence,

RQI must evaluate all T integrals in (15) separately; hence we sum function evaluations

over all computations. In contrast, the FFBS algorithm requires only one run to generate

particles that can be used to compute the entire sequence.

We report convergence in two ways. First, for each approximation run with Ntotal

function evaluations, we report the mean error, averaging over t and s:

ē(I(g), Ntotal) =
1

ST

T∑
t=0

S∑
s=1

e(Ist(g), Ntotal) , (34)

where Ist(g) is the mean integral for the s-th simulated data set and period t, and g is the

function whose evaluations we count—in this case, Φθ.
19 Second, we report the variation

in approximation errors by displaying the full range (min-max across t, s) of errors at

each Ntotal.

18See Reich (2018) for more details on balancing integration and interpolation.
19Recall that it is not the integral over Φθ, but that Φθ is needed to compute the mean, and only its

evaluations matter for computational effort.
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Figure 1: Numerical performance of RLI-based mean approximation vs. particle smoother

(a) Horizon T = 10

(b) Horizon T = 100

Notes: We compute the mean sequence for the time-varying volatility {xt}Tt=0 for the Stochastic Volatility
model (Eqs. (31)-(32)) and S = 10 simulated data sets of length T = 10 and T = 100 respectively. We
use our RQI algorithm as well as a standard FFBS bootstrap Particle smoother, each with increasing
total numbers of function evaluations Ntotal. We report the mean as well as the range of the relative
approximation error as defined in Eq. (33), taken over all simulated data sets and all periods of the mean
sequence. For reference, we provide triangles with slope r = −4 and r = −1/2 indicating the theoretical
convergence rate for RQI (with Gaussian quadrature and cubic interpolation) and particle smoothing
respectively.
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Errors are plotted on log-log axes, as is standard to display convergence: increasing

Ntotal by one order of magnitude should add r digits of accuracy. From the theory above,

we expect slopes near r ≈ 4 for RQI (in this smooth Stochastic Volatility setting) and

r = 1/2 for FFBS. For readability, we overlay reference lines with the approximate

empirical slopes.

As expected, RQI converges much faster to the true mean, with an empirical rate

close to r ≈ 4. It achieves the same approximation errors as particles with far fewer

function evaluations; given more evaluations, it reaches accuracy levels that are not real-

istically attainable with particle methods. There is a short “burn-in” region reflecting

pre-asymptotic error typical of deterministic quadrature (Gerstner and Griebel (1998)),

but beyond that the log-log slope stabilizes near the theoretical benchmark. RQI is also

reliable in the worst case: the maximal error (over simulations s and periods t) drops

quickly, whereas particle smoothing can exhibit large errors for some periods even with

many particles.

To conclude, for uniformly good approximation (e.g., at least two digits of relative

accuracy), RQI should be preferred: it is faster for a given accuracy and attains higher

accuracy for a given computational budget. If only a very rough approximation is needed,

the FFBS particle smoother may be the cheaper alternative. Practically, this difference

stems from work reuse: particle smoothing can leverage a single run for many summaries,

whereas RQI evaluates integrals separately (e.g., T expectations for the mean and multiple

coverage integrals across candidate c for bands). This structural overhead makes RQI

less attractive in the low-accuracy regime. That said, our current implementation is not

fully optimized: shared recursion segments (e.g., the first T − t steps when computing

means for all t) can be cached and reused, which would cut evaluations substantially. We

view such reuse as a straightforward avenue for further speedups.

Next, we show the numerical performance of our RQI algorithm for plug-in prediction

bands: We compute plug-in prediction bands for simulated data at coverage level 1−α =

0.95. As before, we consider plug-in inference (true θ, no parameter uncertainty), two

horizons T ∈ {10, 100}, and S Monte Carlo replications with independently simulated

datasets.

We again use Gauss-Hermite quadrature and cubic splines for the RQI method, and

a basic FFBS particle smoother to obtain smoothed particles. For plug-in prediction

bands, recall that they are obtained as the solution of the root-finding problem (18).

This means that, for each simulated dataset, we first compute the mean sequence and

the per-period variances (the fixed ingredients of the one-scale class). Second, a bisection

algorithm iterates over the scale c, computing the coverage of the candidate band Bθ(c)—

i.e., approximating a coverage integral for each candidate c via the recursion in (24)—until

it finds the root c∗ at which coverage equals 1−α. Since our RQI method computes each

of these integrals separately, the computational effort for the exact plug-in band on a
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Figure 2: Numerical performance of RLI-based prediction band approximation vs.
Particle Smoother: Scales

(a) Horizon T = 10

(b) Horizon T = 100

Notes: We compute the scale for the exact plug-in prediction band in the one-scale class of prediction
bands as defined in Eq. (26) for the time-varying volatility {xt}Tt=0 for the Stochastic Volatility model
(Eqs. (31)-(32)) and S = 10 simulated data sets of length T = 10 and T = 100 respectively. We use
our RQI algorithm as well as a standard FFBS bootstrap Particle smoother, each with increasing total
numbers of function evaluations Ntotal. We report the mean relative approximation error as defined in
Eq. (33), taken over all simulated data sets. For reference, we provide triangles with slope r = −4
and r = −1/2 indicating the theoretical convergence rate for RQI (with Gaussian quadrature and cubic
interpolation) and particle smoothing respectively.26



Figure 3: Numerical performance of RLI-based prediction band approximation vs.
Particle Smoother: Coverage

(a) Horizon T = 10

(b) Horizon T = 100

Notes: We compute the coverage of tthe exact plug-in prediction band in the one-scale class of prediction
bands as defined in Eq. (26) for the time-varying volatility {xt}Tt=0 for the Stochastic Volatility model
(Eqs. (31)-(32)) and S = 10 simulated data sets of length T = 10 and T = 100 respectively. We use
our RQI algorithm as well as a standard FFBS bootstrap Particle smoother, each with increasing total
numbers of function evaluations Ntotal. We report the mean relative approximation error as defined in
Eq. (33), taken over all simulated data sets. For reference, we provide triangles with slope r = −4
and r = −1/2 indicating the theoretical convergence rate for RQI (with Gaussian quadrature and cubic
interpolation) and particle smoothing respectively.27



given draw equals the sum of function evaluations across all these approximations. By

contrast, for FFBS we reuse the smoothed particles from a single run to approximate

both the mean/variance ingredients and the coverage for different c (by computing the

weighted share of smoothed particles inside the band for a candidate c).

We report relative approximation errors for two targets—scale error and coverage

error. For the exact one-scale band, we identify the solution by its scale c∗(y0:T ). For

each dataset ys0:T we compute a high-accuracy RLI reference c∗s, and then report the mean

relative error

ē
(
c∗, Neval

)
≡ 1

S

S∑
s=1

e(c∗s, Neval) , (35)

suppressing the dependence on α in the notation. Additionally, we report the relative

error in the achieved coverage of the bands delivered by each method. Specifically, using

the RQI method at high accuracy, we evaluate the coverages P
x0:T |y0:T
θ

(
B(c∗s) | ys0:T

)
of the approximated plug-in bands for both methods and compare them to the target

1− α = 0.95. We then average over datasets:

ē
(
P

x0:T |y0:T
θ (B(c∗) | y1:S0:T ), Neval

)
≡ 1

S

S∑
s=1

e
(
P

x0:T |y0:T
θ

(
B(c∗s) | ys0:T

)
, Neval

)
. (36)

This second measure tests whether errors from approximating the mean, variances, and c∗

might cancel—especially for particle smoothing—so that the resulting band differs from

the true exact one-scale band yet still attains the correct coverage. Note that, since we

As with the point estimator, we find that our RLI-based method is much faster,

even though it requires recomputation at each iteration step of the optimizer, whereas

the particle smoother reuses a single set of particles. Under suitable regularity condi-

tions on Pθ, this advantage is largely model-agnostic: model complexity is handled in

the integration, while the optimization concerns only the strictly increasing, continu-

ously differentiable coverage function. Consistent with this regularity, the errors for both

metrics—convergence in c∗ and in achieved coverage converge at virtually the same rate.

3.2 Implementing Predictive Inference

We address predictive inference under parameter uncertainty by taking the prediction

set to be the union of plug-in bands across a confidence set for θ, and we compute

this union via a series of constrained optimization problems. In simulation, the plug-in

band undercovers, whereas the prediction band union attains the target coverage, albeit

somewhat conservatively.
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3.2.1 Prediction Band Union

We define the prediction band union and establish a coverage lower bound, which we use

to calibrate the union to a target coverage level under parameter uncertainty. We then

derive a series of small, smooth constrained optimization problems that standard solvers

can handle, and use them to compute the projected prediction band union.

Predictive inference for the full latent path x0:T , i.e., acknowledging parameter un-

certainty, as discussed in Section 2.4, is difficult for two reasons: First, for nonlinear

state-space models, the joint law of (x0:T , θ) is usually not available in closed form, so in

a frequentist setting without assumed prior over θ, one cannot integrate out θ to con-

struct the exact prediction set under parameter uncertainty or to evaluate its coverage

analytically. Second, the property (9) imposes only one scalar coverage constraint on a

high-dimensional set, so the target prediction set (as in the plug-in case) is not unique.

It is therefore natural to start from the plug-in construction and then augment it

to account for parameter uncertainty. In this paper, we construct a prediction set under

parameter uncertainty by taking the union of plug-in prediction bands across a confidence

set for θ. For a target level α, our building blocks are plug-in bands with conditional

coverage 1− α̃20. Define

X̂∪
γ,α̃(y0:T ) ≡

⋃
θ∈Θ̂γ(y0:T )

X̂α̃(θ, y0:T ), (37)

where Θ̂γ(y0:T ) is a (1− γ)-level confidence set for θ.

The prediction band union admits a simple lower bound in the predictive inference

problem: if the plug-in bands attain conditional level 1 − α̃ for every fixed θ and the

confidence set Θ̂γ(y0:T ) has (finite-sample) level 1− γ, then for any θ ∈ Θ,

PX,Y
θ

(
x0:T ∈X̂∪

γ,α̃ (y0:T )
)

(38)

=PX,Y
θ

(
x0:T ∈ X̂∪

γ,α̃ (y0:T ) , θ ∈ Θ̂γ(y0:T )
)

(39)

+ PX,Y
θ

(
x0:T ∈ X̂∪

γ,α̃ (y0:T ) , θ /∈ Θ̂γ(y0:T )
)

(40)

≥PX,Y
θ

(
x0:T ∈ X̂∪

γ,α̃ (y0:T ) , θ ∈ Θ̂γ(y0:T )
)

(41)

≥PX,Y
θ

(
x0:T ∈ X̂α̃ (θ, y0:T ) , θ ∈ Θ̂γ(y0:T )

)
(42)

=Ey0:T
θ

[
1{θ∈Θ̂γ(y0:T )}P

x0:T |y0:T
θ

(
x0:T ∈ X̂α̃ (θ, y0:T ) |y0:T

)]
(43)

=(1− α̃)P y0:T
θ

(
θ ∈ Θ̂γ(y0:T )

)
(44)

=(1− α̃)(1− γ) (45)

20Since the target of the final prediction set is α, we write α̃ for the coverage level used inside the
plug-in bands to keep the two coverages distinct.
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The key step (42) uses that, on the event {θ ∈ Θ̂γ(y0:T )}, the plug-in band X̂α̃(θ, y0:T ) is

a subset of the union X̂∪
γ,α̃(y0:T ). Hence, choosing α̃ and γ such that

(1− α̃)(1− γ) = 1− α (46)

ensures that X̂∪
γ,α̃(y0:T ) has predictive coverage at least 1−α. The bound holds uniformly

over θ ∈ Θ provided both ingredients (plug-in conditional validity and Θ̂γ validity) hold

uniformly; in practice, Θ̂γ is typically only asymptotically valid, so (45) holds with an

o(1) remainder as T → ∞.

In this paper, we take Θ̂γ from likelihood-ratio test (LR) inversion, which enjoys

classic frequentist validity asymptotically. The confidence set Θ̂γ can be derived by

inverting the likelihood-ratio test (LR):

Θ̂γ(y0:T ) =
{
θ : logL(θ | y0:T ) ≥ logL(θ̂ | y0:T )− 1

2
χ2
p, 1−γ

}
, (47)

where L(θ | y0:T ) is the likelihood of θ given the data as defined in (6), θ̂ is the MLE,

and χ2
p, 1−γ is the (1− γ)-quantile of χ2

p for p = dim(θ). This set enjoys classic frequentist

validity asymptotically

lim
T→∞

inf
θ∈Θ

PX,Y
θ

(
θ ∈ Θ̂γ(Y0:T )

)
= 1− γ, (48)

where the probability is with respect to repeated sampling of the full time series {xt, yt}Tt=0

at fixed T . Specifically, Gilch, Reich and Wilms (2025) show consistency and asymptotic

normality of θ̂ even when the likelihood L(θ | y0:T ) must be approximated. 21

The calibration (46) tends to be conservative: Empirically, values of γ larger than

those solving (1−α̃)(1−γ) = 1−α often still yield near-nominal predictive coverage. The

conservatism stems from our proof technique: we (i) discard the branch {θ /∈ Θ̂γ(y0:T )}
and (ii) replace the union by the single plug-in set at θ, each step shrinking the probability

event (see the two inequalities Eqs. (41)-(42)). Tightening the prediction band union

would require a sharper lower bound—one that retains more of the discarded mass or

exploits dependence between events—or an alternative set construction that achieves the

predictive guarantee with less slack.

Even with the conservative lower bound (45), we still must choose (α̃, γ), and this

choice directly affects the size of the PU band. In fact, α̃ and γ are underdetermined

because any pair satisfying (46) attains the same lower bound, yet different pairs yield

different prediction band unions with different sizes. For a given sample, a principled

choice is to search for the tuple (α̃, γ), which minimizes a size functional of the prediction

21Recall that this is the case here, as the likelihood forms a similar integral over the missing observations
as the mean and the plug-in coverage. Gilch et al. (2025) approximate the likelihood with the RLI
algorithm, a simpler version of RQI.
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band union (e.g., total width) subject to the condition (46):

min
0≤α̃,γ≤1

size
(
X̂∪

γ, α̃(y0:T )
)
, (49)

s.t. (1− α̃)(1− γ) = 1− α (50)

Practically, rearranging the constraint to solve for γ(α̃) = 1− 1−α
1−α̃

reduces the calibration

to a one-dimensional search in α̃, which may be solved by Bisection or Newton methods

(recall that we assumed sufficient regularity before). Monotonicity is clear in the extremes:

decreasing α̃ (more conservative plug-in bands) or decreasing γ (larger confidence set)

both enlarge X̂∪
γ,α̃(y0:T ), but the optimal trade-off is data dependent.

If evaluating the full frontier (α̃, γ(α̃)) is computationally expensive, we consider two

types of heuristics: First, a simple and effective heuristic is the square-root split,

1− α̃ = 1− γ =
√
1− α , (51)

which balances the two uncertainty sources so that neither dominates. When prior or

empirical intuition about the relative tail behavior of θ̂ versus the plug-in bands for x0:T

is available, one may “tilt” the split accordingly by assigning a larger share of the product

1 − α to the relatively better-behaved component (e.g., heavier latent tails ⇒ increase

1− γ, lighten 1− α̃, and vice versa).

Our second heuristic exploits the fact that, in large sample, parameter uncertainty

shrinks while the model-induced uncertainty in x0:T does not vanish to minimize the

width of the prediction band union. For fixed γ, the LR confidence set Θ̂γ(y0:T ) shrinks

as T → ∞. Hence, the asymptotically optimal target is to let γ → 0 and α̃ → α: this

minimizes the contribution of parameter uncertainty while keeping the plug-in coverage

at the desired level. In finite samples, γ = 0 would produce an uninformative LR set,

but asymptotically θ̂ → θ and Θ̂γ(y0:T ) collapses, so the set union becomes minimal.

In practice, we therefore seek a schedule γ(T ) ↓ 0 such that the confidence sets still

contract. Along the calibration frontier (1− α̃(T ))(1− γ(T )) = 1− α, set

1− α̃(T ) =
1− α

1− γ(T )
=⇒ α̃(T ) ↑ α as γ(T ) ↓ 0. (52)

A sufficient condition for contraction is that the LR “radius” obeys χ2
p, 1−γ(T ) = o(T ), be-

cause standard quadratic expansion of the log-likelihood yields a diameter for Θ̂γ(T )(y0:T )

of order Op

(√
χ2
p, 1−γ(T )/T

)
. Using the tail behavior χ2

p, 1−γ ∼ 2 log(1/γ) as γ ↓ 0, any

choice γ(T ) = T−k with k > 0 gives√
χ2
p, 1−γ(T )

T
∼

√
2k log T

T
−→ 0, (53)
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so the LR confidence sets shrink despite the decreasing confidence level.22

In particular, under such a schedule, Θ̂γ(T )(y0:T ) ⇒ {θ} and α̃(T ) → α. Con-

sequently, the prediction band union

X̂∪
γ(T ), α̃(T )(y0:T ) =

⋃
θ∈Θ̂γ(T )(y0:T )

X̂α̃(T )(θ, y0:T ) (54)

converges to the plug-in band at the true parameter and target level, i.e., to X̂α(θ, y0:T ).

With the theoretical setup in place, we now turn to a fully deterministic implementa-

tion of the prediction band union. We show that the smallest hyperrectangle enclosing the

union can be obtained via a series of constrained optimization problems. These problems

are straightforward to solve—even for complex, nonlinear state-space models—because

they can leverage our RQI algorithm from the previous section.

As an (T +1)-dimensional set, the prediction band union X̂∪
γ,α̃(y0:T ) generally has an

irregular shape: each X̂α̃(θ, y0:T ) is a band, i.e., a hyperrectangle in the space of possible

missing sequences, R(T+1), but their union need not be. We therefore report its minimal

axis-aligned (hyperrectangular) envelope

X̂□
γ,α̃(y0:T ) ≡ {x :

¯
xt ≤ xt ≤ x̄t for all t} , (55)

where

x̄t ≡ max
x∈X̂∪

γ,α̃(y0:T )
xt, (56)

¯
xt ≡ min

x∈X̂∪
γ,α̃(y0:T )

xt. (57)

This introduces a projection error (see Footnote 11) but yields a computable object that

preserves simultaneous, pathwise interpretation. Operationally, computing this projec-

tion reduces to 2T scalar extremizations, which we cast as smooth constrained programs

next.

In particular, we compute each envelope boundary x̄t,
¯
xt as the solution of a smooth

22Pathwise nesting Θ̂γ(T ) ⊂ Θ̂γ(T ′) for all T ≥ T ′ is not guaranteed, because increasing T tightens
curvature (shrinking sets) while decreasing γ(T ) loosens the threshold (expanding sets). The schedule
above ensures asymptotic contraction (diameter op(1)), which suffices for our limit statements.
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constrained program.23 For the upper boundary, this is

x̄t = max
x∈RT+1, c>0, θ∈Θ

xt (58)

s.t. x ∈ Bθ(c), (59)

P
x0:T |y0:T
θ

(
Bθ(c) | y0:T

)
= 1− α̃, (60)

θ ∈ Θ̂γ(y0:T ). (61)

The lower boundary
¯
xt is obtained by replacing “max” with “min”. Note that, we are

not maximizing xt over a precomputed union; rather, we allow any x ∈ RT+1 but enforce

that x belongs to some plug-in band of level 1− α̃ and that the corresponding parameter

lies in Θ̂γ(y0:T ). This makes the feasible set of (58)-(61) exactly the (implicit) union, so

the optimizer attains the true envelope boundary. Furthermore, constraint (63) hides two

tasks: (a) evaluating σ̂2
t (an integral of the form (15), handled via our RQI approximation)

and (b) obtaining the point path x̊t. If the point path is the mean sequence, both pieces

use the same RLI machinery; if it is the MAP, i.e., the most likely sequence, the problem

becomes bilevel (outer (xt, c, θ), inner MAP), which is generally hard but practical with

software that handles implicit functions, e.g., CasADi (Andersson et al., 2019).

Otherwise, the resulting program is a small, smooth nonlinear optimization that

off-the-shelf solvers handle well, e.g., with automatic differentiation (AD); in practice,

supplying analytic/AD gradients and using warm starts across t yields stable, fast solves.

In particular, even for complex state-space models, our RQI algorithm delivers all re-

quired components (point estimator, variance, and plug-in coverage) quickly and with

high accuracy.

We can refine the constrained optimization problem further to

x̄t = max
xt∈R,c∈R>0,θ∈Θ

xt (62)

s.t. − σ̂t ≤
xt − x̊t

c
≤ σ̂t, (63)

P
x0:T |y0:T
θ (Bθ(c)|y0:T ) ≤ 1− α, (64)

logL (θ|y0:T ) ≥ logL(θ̂|y0:T )−
1

2
χ2
p,1−γ (65)

By refining the constraints in (62)-(65), we reduce the decision dimension of the max-

23Forming X̂□
γ,α̃(y0:T ) by iterating over plug-in bands on a grid of Θ̂γ(y0:T ) ⊂ Rp is ineffective. First,

Θ̂γ(y0:T ) contains infinitely many θ, so any discretization risks missing the true extremizers. Second, the

width and location of X̂α̃(θ, y0:T ) can be non-monotone in θ; extremal coordinates maxxt or minxt may
occur at interior points, not just on the boundary of Θ̂γ . A boundary-only net is therefore unsound, while
a full interior net must be exponentially fine in p to be safe—prohibitively costly and still vulnerable to
gaps.
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imization from T + p + 224 to 2 + p, i.e., we no longer optimize over the full sequence

x, only its t-th component xt, along with c and θ. Likewise, the number of inequality

constraints drops from 2T + 4 to just 4, since we no longer need to enforce band bounds

for all off-target periods of the candidate sequence.

We justify the simplifications in (63)-(65) one by one. For (63), we have replaced the

abstract condition for x to be included in the plug-in prediction band Bθ(c) by its concrete

bounds. Note that due to the rectangular shape of Bθ(c), the maximization in dimension

(i.e. period) t is independent of all other periods. Hence, we can discard all other periods

xs, s ̸= t, of the candidate sequence x and it suffices to constrain it in the t-th dimension.25

Second, because the objective is to increase xt, the optimizer will “push” the band outward

by enlarging c.26 Without a coverage cap, c (and thus x̄t) would “blow up”. It therefore

suffices to impose an upper bound on the plug-in coverage, P
x0:T |y0:T
θ

(
Bθ(c) | y0:T

)
≤ 1− α̃

(analogously with 1 − α if one calibrates directly to the product frontier). The lower

bound is immaterial in this maximization since the optimal c is the largest feasible one.

Importantly, this also holds when minimizing, i.e., for computing the lower bound
¯
xt

since the plug-in prediction bands are designed to be symmetric. Finally, the LR-based

confidence set is defined by the inequality logL(θ | y0:T ) ≥ logL(θ̂ | y0:T ) − 1
2
χ2
p,1−γ.

We can enforce this directly for each candidate (xt, c, θ) during optimization, avoiding

the separate computation (or discretization) of Θ̂γ(y0:T ) while retaining exactly the same

feasible θ.

Leaving aside any issues with the time series setting and occasional observations, a

possible alternative to our approach could be bootstrap methods, which may be used to

resample the data and construct a prediction band union based on the recomputed para-

meters. However, this approach requires truncating the empirical parameter distribution

somewhere and it is a priori unclear how one would compute the resulting quantiles over

the set of plug-in prediction bands (for the recomputed parameters).

3.2.2 Simulation Experiments

Finally, we confirm the validity and necessity of our approach in a simulation experiment

for a linear Gaussian model by demonstrating that the plug-in prediction band indeed

undercovers, and then showing that the projected prediction band union does satisfy our

coverage target.

24T + 1 coordinates for the candidate path x, p for the parameter vector θ, and 1 for the scale c.
25This coordinate-wise reduction fails for non-rectangular plug-in sets (e.g., highest-density regions).
26Reich and Judd (2020) follow a similar approach to obtain confidence bands for functions of coun-

terfactual parameters by maximizing an implicitly defined likelihood using MPEC.
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We study a linear-Gaussian state-space model

yt = β xt + ηt, (66)

xt = ρ xt−1 + εt, (67)

with ηt
i.i.d.∼ N (0, σ2

y) and εt
i.i.d.∼ N (0, σ2

x). We take x0 ∼ N
(
0, σ2

x/(1 − ρ2)
)
(stationary

initialization).

In this setting, Kalman filter/smoother (KF/KS) yields the exact point path (we

use the mean) and pointwise standard deviations, and provides the exact log-likelihood

L(θ | y0:T ) for θ = (ρ, σx). This removes approximation error so we can isolate the effect

of parameter uncertainty. In more complex models, the methods from Section 3.1 replace

KF/KS. One quantity still requires an outer search: the plug-in band scale c⋆ cannot be

read off from KF marginals, so we compute it by monotone root-finding of (18) using our

RQI algorithm.

We vary two uncertain parameters, ρ and σx, fixing β = 1 and σy = 0.5. The

parameter space is Θ = [0.6, 0.99] × [0.1, 2], with truth (ρ, σx) = (0.9, 0.5). For T = 20

(short but informative; T = 10 is too small and T = 100 is computationally heavy) we

draw S = 100 datasets.

Figure 4: Mean path and the projected prediction band union for the latent state {xt}19t=0

in one simulated dataset

Notes: We plot the mean sequence {x̄t}19t=0 (solid blue line) as well as the plug-in prediction band (shaded
blue) and the projected band union (shaded orange) for the linear-Gaussian model defined in Eqs. (66)
and (67). The mean sequence and the plug-in prediction band union are computed using the maximum

likelihood estimator θ̂. The plug-in prediction band satisfies 95% plug-in coverage as defined in Eq. (8),
the prediction band union satisfies predictive coverage as defined in Eq. (45) with α̃ = γ ≈ 0.0253.
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For each dataset y
(s)
0:T we perform three steps: (i) estimate θ̂(s) by maximizing the

KF likelihood over Θ; (ii) compute the plug-in prediction band at level 1− α̃ by solving

(18) (mean path + KF variances); (iii) compute the projected PU band by solving (62)

2T times (upper/lower for each t). Unless stated otherwise we use the square-root split

to target 1− α = 0.95,

1− α̃ = 1− γ =
√
1− α ≈ 0.9747 (α̃ = γ ≈ 0.0253), (68)

and we also report a conservative variant with α̃ = γ = 0.05.

We find that the plug-in band undercovers, whereas the projected prediction band

union attains the coverage goal but is somewhat conservative. Concretely, the plug-in

band covers the true sequence xtrue
0:T in 85 out of S = 100 simulations. By contrast, the

projected prediction band union covers xtrue
0:T in 99 simulations. These results show two

things: first, relying solely on the plug-in band is inappropriate because it underestimates

the uncertainty about the missing sequence inherent in the data; second, the projected

prediction band union corrects this undercoverage but overshoots, yielding conservative

sets. In Figure 4, to visualize full predictive inference in this example, we plot the mean

estimator and the plug-in prediction band, both evaluated at the maximum likelihood

estimator θ̂, as well as the projected prediction band union for one simulated data set.

4 Estimation of Prices in a Steel-Trade Model

To demonstrate the applicability of our methods in real examples, we use it to infer

a sequence of occasionally observed prices in the steel trading model of Hall and Rust

(2021). There, a steel-trading company buys items on the wholesale market, and re-

sells them to retail customers. The inventory management of the company is assumed

to implement the solution to a dynamic profit optimization problem, which trades-off

stockpile available for sale against cost minimization (attempting to “buy low”).

Importantly, the data set is limited to the steel trading company’s transactions,

and is not augmented by data from the wholesale market. Therefore, it contains only

occasional observations of the wholesale price pt, namely for periods where the firm made

an actual purchase; additionally, this observability pattern is endogenous: The company

is less likely to stock-up their inventory when the price is high (but might be forced to do

so if running low), and vice versa. The model admits a state-space representation as in

(1)-(2), allowing us to apply the methods we developed in the previous section to estimate

the band of “reasonable” wholesale prices for the non-observed periods, given the data:

we report the mean path and the projected prediction band union, thereby delivering

full predictive inference for pt under both model-induced randomness and parameter

uncertainty.
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Figure 5: Mean path for the wholesale price sequence {pt}260t=0

TBD: Projected prediction band union analogous to Figure 4.

(a) Horizon t = 0, ..., 130

(b) Horizon t = 130, ..., 260

Notes: We estimate the series of wholesale prices pt for 3/4-inch steel plate in our steel-trade data set
and using the reduced-form model presented in Hall and Rust (2021). Red dots indicate observations of
pt, the solid blue line represents the mean path for pt. The upper panel plots the evolution for periods
t = 0, ..., 130, the lower panel for T = 130, ..., 260.
TBD: Boundaries of the projected prediction band union at the coverage level α = 0.95.
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5 Conclusion

This paper develops a comprehensive frequentist framework for inference fro missing

observations in time series data using nonlinear state-space models. We propose the

Recursive Quadrature and Interpolation (RQI) algorithm, a deterministic alternative to

simulation-based methods, which achieves polynomial convergence rates for the high-

dimensional integrals that arise in estimation. By alternating quadrature and inter-

polation for recursive representations of these integrals, RQI efficiently computes point

estimators and plug-in prediction bands, naturally incorporating occasional observations

whenever available. In simulation experiments, RQI consistently outperforms particle

smoothers in both speed and accuracy.

We further extend inference to account for parameter uncertainty by introducing

the prediction band union, the union of plug-in prediction bands across a confidence set

for the model parameters. This construction yields predictive coverage in the frequentist

sense without relying on priors or resampling and can be implemented as a sequence of

constrained optimization problems. In simulations, the prediction band union corrects

the undercoverage inherent in plug-in procedures and provides finite-sample coverage that

meets or slightly exceeds nominal levels.

Beyond its immediate contributions, our framework opens several promising aven-

ues for future research. Methodologically, extending the RQI and PU constructions to

models with multiple latent states will be important for macroeconomic and financial ap-

plications. Further, our methods allows the analysis of how additional parameters affect

uncertainty about the latent states—a question that, in contrast to parameter estima-

tion, has so far been unexplored in the frequentist framework and may yield insights into

the role of parameter dimensionality in state-space model inference. More broadly, the

methods developed here enable researchers to estimate and empirically apply dynamic

models that were previously infeasible due to computational or data limitations, thereby

expanding the empirical frontier of structural work in fields such as macroeconomics,

labor, industrial organization, and finance.
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ONLINE APPENDIX

More details on particle filtering and RLI

Simulation based methods

A popular way to approximate high-dimensional integrals such as that in the likelihood

(6) is Monte Carlo simulation. These methods are not directly affected by the curse of

dimensionality, so their asymptotic accuracy is essentially independent of the integral’s

dimension (T + 1). The basic idea is to draw Neval samples x0:T from P x0:T
θ and average:

L (θ|y0:T ) =
∫
ST+1
x

P
y0:T |x0:T

θ (y0:T |x0:T ) dP
x0:T
θ (x0:T ) ≈

1

Neval

Neval∑
i=1

P
y0:T |x0:T

θ (y0:T |xi) (69)

Regardless of the dimension of x0:T , and under mild regularity conditions, the simulation

error satisfies∣∣∣∣∣L (θ|y0:T )−
1

Neval

Neval∑
i=1

P
y0:T |x0:T

θ (y0:T |xi)

∣∣∣∣∣ =
√
Varx0:T

θ

[
P

y0:T |x0:T

θ (y0:T |xi)
]
Op

(
N

−1/2
eval

)
(70)

as Neval→∞.

However, sampling directly from P x0:T
θ is generally nontrivial. Consequently, methods

such as particle filtering or Gibbs sampling do not draw from the full joint distribution at

once, but instead iteratively sample from conditional distributions. In particle filtering,

one uses the following recursion for t = 0, . . . , T to obtain samples xi
t ∼ Pθ (xt|y0:t):

Pθ (xt|y0:t−1) =

∫
Sx

Pθ (xt|xt−1)Pθ (xt−1|y0:t−1) dxt−1 (71)

Pθ (yt|y0:t−1) =

∫
Sx

Pθ (yt|xt)Pθ (xt|y0:t−1) dxt (72)

Pθ (xt|y0:t) =
Pθ (yt|xt)Pθ (xt|y0:t−1)

Pθ (yt|y0:t−1)
. (73)

In particular, the filtering algorithm simultaneously computes the conditional densities

for the data, Pθ (yt|y0:t−1), yielding the likelihood as

L (θ|y0:T ) =
T∏
t=0

Pθ (yt|y0:t) . (74)

Regardless of implementation-specific optimizations, simulation attains only the Monte

Carlo rate (70). In practice, this means that in order to gain one additional digit of accur-



acy, one typically requires about 100 times more evaluations of the integrand. Moreover,

because the error bound is probabilistic, the achieved accuracy is not even guaranteed

(even though probability bounds on the maximum error can be stated); similarly, the

estimate of the integral itself is subject to simulation noise. Therefore, simulation-based

approaches are mainly justified if either function evaluations are extremely cheap, or if

the researcher is satisfied with a very coarse (and noisy) approximation of the object of

interested. However, this is not the case for many relevant applications in economics

and finance. For example, many models feature optimizing agents, where the transition

functions Ψθ,Φθ from Equations (1)-(2)—and hence the transition density PX,Y
θ —are not

available in closed form; then, obtaining a sample xt requires solving the agents’ optimiz-

ation problems numerically, making function evaluations expensive, and thus motivating

methods with faster convergence. Also, many solvers that are regularly employed to

optimize the likelihood strongly benefit from noise-free objectives; in the context of es-

timation, this issue is distinctive if either data is scarce or if the likelihood cannot strongly

discriminate multiple sets of parameter values due to the way the model is formulated

(sometimes referred to as “poor identification”), and thus the maximum of the likelihood

is ambiguous and thus hard to pinpoint. Both issues give deterministic approximation

methods a potential edge over simulation in practical applications.

Recursive Likelihood Integration (RLI)

On the other hand, the RLI algorithm addresses both challenges: the slow convergence

of simulation and the incorporation of occasional observations of xt. It does so via two

components: (i) a recursive formulation of the integral and (ii) a per-step combination of

numerical integration and interpolation. The recursion is

f θ
t (xt−1) =

∫
Sx

Pθ (yt, x̃t | yt−1, xt−1) f
θ
t+1(x̃t), dx̃t (75)

for t = 0, . . . , T ,27 so that the final step t = 1 yields the likelihood:

L (θ|y0:T ) =

f θ
1 (x0) if x0 ∈ T̄ ,

f θ
0 else.

(76)

To handle occasional observations, Gilch et al. (2025) modify (75) by replacing the in-

tegral over xt with evaluation at the observed xt. For multivariate states with partial

observations, the integral is restricted to the unobserved components. See Gilch et al.

(2025) for details.

Given the recursive formulation (75), RLI approximates the conditional integral at

27This mirrors the classic filtering recursion in (71) but avoids computing Pθ (xt | y0:t−1) as a ratio
with an additional integral in the denominator.



each step using a numerical integration rule. Unlike simulation-based methods, these

rules use a fixed set of nodes xi and weights wi tailored to weighted one-dimensional

integrals,

∫
A

f(x)ω(x)dx ≈
NQ∑
i=1

wif(xi), (77)

so there is a one-to-one correspondence between the choice of rule (xi, wi) and the pair

(A, ω) specifying the domain and weight function.

Reich (2018) propose a change of variables for the integration variable x̃t which,

intuitively, shifts the integration nodes toward the mass of the integrand.28 Concretely,

we seek a map ξ such that x̃t = ξ(zt, xt−1) and

Pθ (yt, x̃t|yt−1, xt−1) = gt
(
ξ(zt, xt−1), xt−1

)
ω(zt). (79)

This reparametrizes the integral in terms of zt and factorizes the conditional density of

x̃t into a function gt times the quadrature weight ω. We then approximate f θ
t (xt−1) by

f θ
t (xt−1) =

∫
Sx

gt
(
ξ(zt, xt−1)xt−1

)
ω(zt), f

θ
t+1

(
ξ(zt, xt−1)

)
ξ(zt)dzt (80)

≈ f̃ θ
t (xt−1) ≡

NQ∑
i=1

gt
(
ξ(zt,i, xt−1), xt−1

)
f̃ θ
t+1

(
ξ(zt,i, xt−1)

)
, ξ(zt,i). (81)

At this point, a direct application of the change-of-variables scheme can cause an

exponential growth in function evaluations. Because ξ depends on xt−1, the argument

xt−1 of f̃ θ
t also enters f̃ θ

t+1. One step earlier, f̃ θ
t is evaluated at xt−1 = ξ(zt−1,j, xt−2), so

the dependence of f̃ θ
t+1 on xt−1 becomes a dependence on xt−2. Consequently, at time

t + 1 we must evaluate f̃ θ
t+1 for all combinations (zt,i, zt−1,j), i, j = 1, . . . , NQ. Iterating

this argument shows that, under the naive scheme, the number of evaluations of f̃ θ
t grows

as N t
Q for t = 0, . . . , T , i.e., computational cost increases exponentially in T .

RLI solves this issue by using interpolation: we interpolate the function f̃ θ
t using a

28It is suboptimal to approximate ft naively by dividing and multiplying by a weighting function and
then applying a rule designed for A = Sx:

fθ
t (xt−1) =

∫
Sx

Pθ (yt, x̃t|yt−1, xt−1) f
θ
t+1(x̃t)

ω(x̃t)
ω(x̃t)dx̃t ≈

NQ∑
i=1

wi
Pθ (yt, x̃t,i|yt−1, xt−1) f

θ
t+1(x̃t,i)

ω(x̃t,i)
. (78)

The mismatch between the integrand and the weight ω induces large errors because nodes x̃t,i cluster
where ω is large. With small NQ, the integrand is evaluated mainly where it is small. Although this error
vanishes asymptotically, it can be substantial unless NQ is large. (This mirrors the need for importance
sampling when the support of a function and the sampling density have little overlap.)



fixed number, NI , of interpolation nodes

f̂ θ
t (xt−1) ≈ INI(f̃ θ

t )(xt−1) (82)

= INI

 NQ∑
i=1

gt
(
ξ(zt,i, ·), xt−1

)
f̂ θ
t+1

(
ξ(zt,i, ·)

)
, ξ(zt,i)

 (xt−1) (83)

The function f̂ θ
t can be evaluated for any value xt−1 = x without triggering new eval-

uations of f̃ θ
t+1 and therefore avoids the exponential “blow-up” of function evaluations.

Constructing f̂ θ
t requires Neval = NQNI evaluations of the integrand: for each of the NI

interpolation nodes, the integrand has to be evaluated NQ times. Finally, replacing f θ
t

by f̂ θ
t in the recursion (75) yields the likelihood approximation

L̂Neval (θ|y0:T ) =

f̂ θ
1 (x0) if x0 ∈ T̄ ,

f̂ θ
0 else.

(84)

Numerical integration and interpolation has the advantage that they can achieve

polynomial converging approximation errors, O(N
−rQ
Q ) and O(N−rI

I ) respectively. Reich

(2018) shows that the RLI recursion (83), i.e., alternating interpolation and integration

to approximate the sequence of nested integrals {f θ
t }Tt=0, preserves these polynomial con-

vergence rates. For fixed T , it yields following approximation error rate:∣∣∣L (θ|y0:T )− L̂Neval (θ|y0:T )
∣∣∣ = O

(
N−r

eval

)
(85)

where r =
rQrI
rQ+rI

.
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